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Phase Transitions in a Two-Dimensional System
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Molecular-dynamics calculations on melting and evaporation in a two-dimensional (2D)
Lennard-Jones system show a nonuniform particle distribution in the temperature and

density intervals where the phase transitions take place. The behavior of the system
agrees qualitatively with the behavior of a corresponding 3D system with a liquid-gas
critical point and first-order phase transitions. No evidence is found for the two-stage
melting behavior which has recently been predicted.

PACS numbers: 64.10.+ h, 05.70.Fh, 68.10.Jy

Recently a detailed theory of melting in two
dimensions (2D) has been put forward by Halperin
and Nelson (HN). ' The theory is based on the
basic assumption that if the melting in a 2D sys-
tem is not a first-order phase transition, then
two second-order transitions are required to
make the transition from the solid phase to the
isotropic fluid phase. The solid and fluid phases
will then be separated by an intermediate phase
with short-range translational order and long-
range orientational order. In the case of melting
from the triangular lattice the so-called "hexatic"
phase will have a sixfold anisotropy. This pre-
diction has been supported by a molecular-dynam-
ics (MD) calculation' on a 2D Lennard-Jones sys-
tern, which seems to show a behavior at low tem-
peratures compatible with the predictions by HN.
In this Letter I will show that the MD result is
compatible with traditional first-order melting.

The molecular-dynamics calculations are per-
formed for a fixed number (N) of particles in a
box with periodic boundaries and the temperature
(T) and pressure (p) are then obtained from the
kinetic energy and the virial, respectively. Thus,
the MD calculations are often presented as iso-
chores in a p Tdiagram. In-Fig. 1 are sketched
isochores in a p Tphase diagra-m; also shown in
the figure is the location of the area where HN

predicted the hexatic phase. %hen the solid-state
system is heated the pressure increases until it
reaches the melting pressure. If the melting is
first-order the system will break up and form co-
existing solid and fluid phases, and the pressure
will follow the melting-pressure line until the
solid is melted completely. However, if the melt-
ing consists of the two second-order phase transi-
tions, the isochore might be very similar in fash-
ion to the isochore for a first-order transition,
as indicated in Fig. 1, and it is not possible from
the isochores themselves, obtained from a dis-
crete set of MD data, to decide about the nature

of the melting, as also pointed out in Ref. 2. How-

ever, Frenkel and McTague (FM) stated that
their MD system did not show hysteresis, that
the system lost its resistance to shear above

hT, /e = 0.36, and finally that the interphase ex-
hibited sixfold anisotropy. From these three ob-
servations they concluded that the melting was
compatible with the HN theory with the interme-
diate phase located in the temperature interval
hT je Et0.36, 0.57] for the density Po'=0.8. Be-
low 0.36 the system should then be in the solid
state with a triangular lattice structure. How-

ever, this is not the case as can be seen from
following facts:
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FIG. 1. Schematic p-T diagram for the 2D system
with the phase transition lines (full lines) . The triangle
near the triple point is the area where Halperin and
Nelson predict the hexatic phase. The dotted lines are
isochores.
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The density in FM's simulation is pv'=0. 8.
This is considerably less than the density at zero
temperature, p, o' ~ 2' '3 ' ' = 0.9165, which
means that when a macroscopic solid system is
cooled down it will break up into two phases
(solid and gas) at A in Fig. 1. A finite system
which is constrained by the periodical boundaries
will have a tendency to cross the point A and con-
tinue in a uniform state with negative pressure
and when it tries to break up into a more dense
solid and the coexisting gas (vacuum), the sys-
tem will end in an unphysical situation, since the
periodical boundaries only match with a triangu-
lar lattice with po'= 0.8.' In accordance with this
fact FM find a negative pressure at T(0.36 [Ref.
2, Fig. 1(b)]. I have performed MD calculations
for the same isochore as FM's. In Fig. 2 are
shown the particle trajectories for kT/e = 0.36
and for 1000 time steps. ' The state is created
by starting the system with the particles in a tri-
angular lattice and adjusting the temperature to
0.36 (and the torque to zero). The system has an
initial pressure pa'/e = —1, but it breaks up into
a two-phase system after few hundred time steps.
Figure 2 is obtained after 5400 time steps. The
pressure of the two-phase system behaves as in
Ref. 2, Fig. 1(b), with negative pressures for
kT/e (0.36 due to the constraints from the period-
ical boundaries on the "coexisting" solid phase.

The triple-point values of T, p„and p, for the
MD system are estimated to be' kT/e = 0.41,
p, o'= 0.81-0.82, and p, v' &0.80. If these values
are correct a macroscopic fluid system with po'
= 0.80 will break up into coexisting solid and fluid

at 8 (Fig. 1) and continue in two-phase states
under further cooling provided that the phase
transitions are of first order. I have performed
MD calculations which show that the system be-
haves in this manner. In Fig. 3 are shown the
trajectories over 2000 time steps for the 256 par-
ticles within a quadratic box' and at a tempera-
ture kT/a=0. 50. The state is generated in the
same way as FM's by cooling the system slowly
down from a fluid state. From the figure it can
be seen that even at this "high" temperature and
for a quadratic box the system is nonuniform with
a region with the particles arranged in a triangu-
lar lattice. At a lower temperature the "triangu-
lar" coexisting solid phase is increased as one
should expect. The system is followed for 16000
time steps and Fig. 3 shows the movements of
the particles in the middle of the time interval.
During the time interval the shape of the coexist-
ing phases changes, which means that the inter-
facial excess free energy is relative small.

From these observations I conclude that the dy-
namic behavior of the (finite) MD system is com-
patible with first-order phase transitions, and
the sixfold anisotropy found by FM is explained
by the anisotropy of the solid coexisting phase.
The discontinuous change in the slope of p at kT/
e =0.57 is due to the fact that the system goes
from fluid states to coexisting solid-fluid states,
and the corresponding change in the slope at kT/
a=0.36 is due to the constraints from the period-
ical boundaries which force the system into nega-
tive pressures at kT/c & 0.36. The system will
now show hysteresis at kT/c =0.36 since it is

FIG. 2. Trajectories of the particles obtained from
1000 time steps and at kT/e =0.86 and po =0.80.

FIG. 3. Trajectories of the particle center obtained
from 2000 time steps a.t kT/& =0.50 and pa =0.80.
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FIG. 4. Trajectories of the particle center obtained
from 800 time steps and at 0T/& =0.50 and po =0.357.

changes during the calculation. This behavior
can be explained by the fact that the excess free
energy is relatively small, which will be the case
near the critical point, where — on the other
hand —the fluctuations are large and the 256-par-
ticle system might be too small. However, a test
run on a 576-particle system showed the same
phase separation, and if the system was forced
into a uniform particle distribution by constraints, '
the pressure exhibited a van der Waals loop.
Again the (dyna, mic) behavior of the finite system
indicates the existence of a first-order liquid-
gas transition below the critical temperature T,
= 0.56.'
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found that no points on the isochore correspond
to a uniform solid.

In the end of their Letter FM stated that they
have tried to reproduce some Monte Carlo cal-
culations" that seemed to suggest a first-order
liquid-gas transition at lower densities, but apart
from the observation that the system was very
sluggish and showed large density fluctuations,
they failed to find evidence for a two-phase sys-
tem. The present calculations confirm this be-
havior. However, a particie diagram (Fig. 4)
shows a nonuniform liquid-gas system. The fig-
ure is for kT/e =0.50 and po'=0. 357 and for 800
time steps and represents a typical particle dis-
tribution although the shape of the liquid phase
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