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Angular distributions for dileptons formed in hadronic collisions at large mass Q2 and
large transverse momentum Q& are calculated, assuming various two-body quantum
chromodynamic subprocesses. The main results are the following: (a) The polar and
azimuthal distiibutions are correlated. (b) For fixed Qq, the distributions scale in the
variable m= Qq /Q, and thus are independent of total energy. (c) Each subprocess ex-
hibits a characteristic function of m, independent of the constituent distributions.

The discovery of lepton-pair production in had-
ronic interactions at large transverse momentum
has prompted many investigations into possible
underlying "hard" quantum-chromodynamic (QCD)
processes. ' Since the transverse momentum is
too large to have come from the intrinsic trans-
verse momentum of quark partons in the usual
Drell- Yan annihilation mechanism, ' it seems
reasonable to look at some bvo-body hard-scat-
tering QCD processes involving gluons. For large
enough transverse momentum, one might expect
the strong coupling 0., to be small enough so that
the lowest-order "pole" diagrams would dominate.
Such calculations give reasonably shaped spectra,
but unfortunately are infrared divergent for van-
ishing quark and gluon masses. Hence the ab-
solute normalization at small transverse momen-
tum is uncertain, and it is unclear on how to join
this contribution to the "normal" Drell- Yan anni-
hilation contribution. It was soon recognized,
however, that the angular distribution of the di-
lepton pair with respect to some fixed axis gives
additional information. ' For small values of the
pair transverse momentum Q„one expects a
1+cos'0 distribution of the pair relative momen-
tum in its rest frame with respect to the quark
(or antiquark) axis. For small intrinsic trans-

verse momentum (k, ) this axis should be close to
the beam (or target) particle axis. The smear-
ing of this distribution has been considered, ' and
is generally quite small for lepton-pair mass
Q'»k, '. When one admits two-body processes,
the angular distribution deviates from the 1+cos28
form, and can in general also have an azimuthal
(y) dependence. However, the extra degree of
freedom in the two-body process allows contribu-
tions at fixed Q, and Q' from a range of parton
energies (or Feynman-x values). Thus the calcu-
lation of the angular distributions involves a com-
plicated folding of the parton distribution func-
tions with the hard-scattering cross sections.
This has been done for some specific processes, '
and numerical results indicate that large devia-
tions from the 1+cos'0 and flat p distributions
can occur in some kinematic regions. It is the
purpose of this investigation to extract some
properties of these distributions which are in-
dependent of the detailed parton distributions in
the initial badrons, and provide some simple ex-
perimental tests for the presence of the underly-
ing two-body hard-scattering processes.

I use the density-matrix formalism to describe
the decay of the lepton pair from a heavy photon
y* produced in an arbitrary polarization state:

W(8, cp) = (3/87t) [1—p„+ (3p» —1) cos'8+ p, , sin'8 cos2++W2 Rep„sin28 cosy],

where 8 and p are the usual angles defined by a
fixed axis (beam or target particle in the rest
frame of the dilepton) and the production plane
defined by the hadrons. The density-matrix el-
ements p, , refer to production-amplitude prod-
ucts summed over all hadron spins, with i and j
the y* helicity along the quantization axis defined
above. The individual 8 and p distributions can
be written

~ w~ere

n = (1 —6b, )/(1+ 2b, )

fl=2p, ,/(3 —»)

(3a)

(3b)

W(8) -1+n cos'8,

W(p) -1+P cos2y,

(2a)
with p»= —,

' -b.
I now calculate the p, , 's for various subprocess-
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es. The kinematics are defined by

[beam parton (q)+target parton (k)]

-[dilepton (Q)+final parton (p)]

with

s =(q+k)', I = (q -Q'), ~ =(q -P)'
The values of 6 and QM', the sum over all spin
amplitudes, are shown in Table I. I have used
the usual two-pole diagrams for each process
(see Ref. 5) and omitted the coupling constants
in amplitudes, since they will cancel in the ratio
which gives 6, n, and P. I have considered the
usual QCD subprocesses qq-yW and qG -qy*
(note the different 6 for q or G as quantization
axis) as well as the constituent-interchange pro-
cess q+M -q+y*, which has been claimed to
possibly fill the gap between present laboratory
energies and truly asymptotic energies. ' A corn-
mon feature of all these processes is that pyy
+ pl y p or py y & Thus we can write

2b, 1 —n
3 —2a 4(++2) '

and the angular distributions in 0 and p are cor-
related. Observation of this correlation would
be strong evidence that one or a combination of
two-body subprocesses are dominant at Q, large
enough to make the pole approximation valid.

Now turn to the calculation of n, through an
averaging of 6 over beam and target parton dis-
tribution functions at fixed Q, . If we write the
Feynman-x fractions of the beam parton momen-
tum q=(x,vs/2) and target k =(x,fs)/2, where

TABLE I. Values of 4 and ZM2 from pole diagrams
for various subprocesses. The first constituent is

A

taken as the quantization axis, and t is the momentum
transfer bebveen that constituent and the dilepton.

u s is the usual total hadronic center-of-mass
energy, then s =x,x, s —= zs. The Q, constraint
gives two possible F values at each s (correspond-
ing to different signs of dilepton longitudinal mo-
mentum). I write f =—q(Q' —s),

7), = -,' + [-,' —zx, '/4(z —~)']'~' (5)

with the usual

~ =- Q'/s,

x, '=—4Q, '/s.

The average A can then be written

Jdx, f,(x,)fdx, f,(x,)g(z)QM'a(z, q, )
fdx, f,(x, )jdx, f,(x,)g(z)QM'(z, g, )

'

(5a)

(6b)

where f, and f, are the parton distribution func-
tions. The factor g(z) =z '[(w-z)' —zx, '] '~'

weights the b, to events in a constant Q,
' interval

(do'/dQ, ' rather than da/dQ). The range of inte-
gration is 0 &x„x2&1, but with a minimum value
of z to ensure enough energy to produce the lepton
pair,

with

(f) ) +6 (f) ) 2 )2 ( )2
=6 y(18) (10)

m =- x, '/4~ = Q, '/Q'.

Since both beam and target axis quantization give
the same result for this process, we can write

and since z;„-1, another kinematic restriction
x, ' ~ (1 —~)' is required. The averaging integral
is now considered separately for each subproc-
ess.

(A) For qq-y*G, from Table I and (5) we cal-
culate

QM'(q, ) =+M'(r) )=, (2z'+ 2~'- zx, '), (9)

(I-Q') 't(I —Q') '+ (~-Q') ')

Q2s tu

(t Q2) 2[( Q2) 2 (t Q2) 2]

+ st@
(t —Q ) 2C(S —Q2) 2+ (Q.—Q2) 2j

Q2S tu
(s+t)2(t-02) 2

2(g Q2)'2+ 2(y (P2) 2

tu

2(s Q2) 2+2(t Q2) 2

~ A-St

2( S-Q2) 2+ g(g Q2) 2

A A-SQ

(s+t)'
p A-st

(S+u)2
AA

b,« =-, A, (zo),
i —ZU +ZUor Qqq =

1+3K +10
(12)

This result has three noteworthy features. First,
it is entirely independent of the g and g distribu-
tion functions and the identity of target or beam
particles. Second, it not only scales with v and

x, ', but it is o~Ly a function of their ratio MI, i.e.,
independent of initial hadron energy. Finally, a
characteristic function of zo, Eq. (12), is pre-
dicted for the + coefficient in the angular dis-
tribution. Note that it is essential for this result
to include both q, , i.e. , to sum over all lepton-
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pair longitudinal momentum.
(B) For qM-qy*, we calculate

QM'(q, )++M'(q )

= (4/x, ')(z —~) —3 —~/z,

~(n, )=~(n )=~,( ).
(»)
(14)

x,' and not just on their ratio, so that the result-
ing n,~ will not exhibit the simple scaling behav-
ior of n„-. One can, however, recover this seal-
ing behavior by extracting 4 from distributions
about both the beam and target axes. One expects

b. ,„(beam axis)+b. ,„(target axis) =&,(w) (15)
But for the meson as the quantization axis, we
get & =0, with the same QM'. Hence for identi-
cal target and beam, we get b,„=—,'b, ,(w), the
same as for the qq case. But for unequal target
and beam particles, one gets b~ =eh, ,(w), where
e is the fraction of total events in which q comes
from the beam and M comes from the target.
Note that, in general, & will depend on both ~ and

~

even for unequal beam and target particles. A
distinction between the qq and qM subprocesses
will only be evident in the unequal separate beam-
and target-axis distributions for the qM case.

(C) For qG-qy*, from Table I we see that
neither QM' nor & in symmetric q, combination
has a simple z-independent form. Thus the ~ ex-
pression has many factors:

(z —'r —4 x~ —& x( 1/z)~+(2 x~ + 2 (x~ 'T/z)+ (2r /z) —(2v'/z')),
(z + —,

' x,' —3~+ —,
' (x, '7/z) + (4v'/z) —(2v'/z')) „,

where the average ( ), is over f,yb„ fo~„&„and ( ), is over f,~„,@,fc~b„. For target=beam, we
get a partial simplification:

2(1 —co) ( v —~'/z)
(z —3~(1 —-', so)+ (4~'/z)(l+ —,'so) —2~'/z') (17)

where again the average is over the q-G distribu-
tion function product.

Note that this E will have a single point zv =1 at
which it is energy independent. Numerical cal-
culation with some typical distribution functions
verifies this property. However, deviations from
this scaling even for M & 1 is typically less than
2%%uo, for fairly wide ranges 0.05 &x,', ~ &0.5, of
the individual scaling variables. One can see
why this is true by examining the behavior of a
typical distribution function. One uses

n,o = (1 —3w + 5w')/(1 + Ra + 5w'), (21)

along with the corresponding p from (4). For
beam & target, one would expect, in general,
some x, '- and 7.-dependent factor times 4, (w).
Again, one can extract ~ values from distribu-
tions about both beam and target axes, and use
(16) to predict

distribution-function parameters. Thus we pre-
dict

f(x) - (1 -x)"x'/x, (18) rY, ,G(beam axis) +Z,o(target axis) = 2b. ,(w). (22)

$6

2 (1+m)(1+5u) (20)

And, not surprisingly, this is precisely the func-
tion of m which was obtained by an empirical fit
to the numerical calculations for a wide range of

where typically 0& P & 1, and 3 & n & 7 for quarks
and gluons in protons. Hence the integrals are
weighted heavily toward small x, and the z =x]x2
values toward z;„. From (5) and (8) we see that
in this region g, =g =&, and

(z")=z,„"=7" (1+2zv+2[zo+w']'~')". (19)

Then (17) yields

E,,G=-, b, , (ao) 1+ 2(1 —w)
1+ 5y

The situation is thus similar to that for qq and
qM: One expects distributions (suitably symme-
trized if beam & target) which are independent of
the quark or gluon distribution functions, energy
independent, and having a characteristic func-
tional dependence (21) on the scaling variable
w =Q, '/Q'. These characteristic o. (m) functions
are shown in Fig. 1, along with the P values for
the y distributions. Note that n drops to values
substantially below unity for quite small ~ = Q, '/
Q', with the lower values (for small w) occurring
for the quark-gluon subprocess.

For fixed-y lepton pairs, only one of the g,
values comes in, and the symmetry is lost. How-

ever, one can combine events with all fixed + y
plus all fixed -y to recover the previous con-
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