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Molecular-dynamics simulations of the two-dimensional, classical electron gas yield
indications for the existence of a self-diffusion constant, in contrast to the case of short-
range interactions. The velocity autocorrelation function exhibits marked oscillations in
the strong-coupling regime. In order to avoid the Ewald summations of the Coulomb in-
teractions in a periodic system, the electrons are confined on a spherical surface.

The two-dimensional (2D), classical electron
gas is a system of charged point particles con-
strained to move on a surface at a temperature
well above the Fermi temperature; charge neu-

-- trality is ensured by a uniform background. This
system can be considered as a simplified model
for electron layers on a liquid helium surface
which are being actively studied both experimen-
tally and theoretically. ' The model ignores, of
course, important aspects, like the coupling of
the electrons to the capillary waves (ripplons) of
the liquid helium surface, but its simplicity ren-
ders it more appropriate for the theoretical study
of 2D systems. We recall that there are strong
theoretical reasons to believe that the self-diffu-
sion coefficient D does not exist for the 2D haxd-
disk fluid, ' ' due to a slow 1/i decay of the veloc-
ity autocorrelation function (v.a.f.). The princi-
pal motivation of the present work is the investi-
gation of self-diffusion in the 2D electron gas with
the help of the "molecular-dynamics" (MD) com-
puter-simulation technique. Static properties of

the same model have already been calculated by
Monte Carlo (MC) computations, "while the crys-
tallization of the electron gas has been studied
both by MD' and MC' simulations. The latter
computations show that the 2D Wigner transition
takes place for a coupling constant I"=e'/ak, T
=10' [where a=(nn) "' is the radius of the Wig-
ner-Seitz disk and n is the areal density] in
agreement with a recent experiment. '

We have performed MD simulations for l = 36
and F = 90 which, for a temperature T = 1 K, cor-

, respond to areal densities n = 1.5~ 10' and 9.4
&& 10' electrons/cm', respectively, typical of ex-
perimental situations. Because of the long range
of the Coulomb interaction, special care must be
taken with the boundary conditions when simulat-
ing small systems. The standard treatment, both
in three- and two-dimensional simulations, is to
use periodic boundary conditions in conjunction
with Ewald summations of the interaction of any
particle with the infinite array of periodic imag-
es of the other particles and the background. ' We
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have explored a different approach by consider-
ing a curved, closed surface, avoiding boundar-
ies from the start. The simplest choice is, of
course, to place N electrons on the surface of a
three-dimensional sphere of radius R." The po-
sition of each electron on the sphere is deter-
mined by two polar angles or equivalently by a
radial unit vector u. The interaction potential be-
tween two electrons, say i and j, is (e'/R)(;, ,
where g, , = arccos(u, . ~ u,.), and Newton's equation

of motion for the ithe electron is
~ ~ 2

mu, . =-—,g, . [u,. —(cosP&,)u;]. (1)R',.&, & (,,' sing;, .

These equations are equivalent to the equations
of motion of N coupled, rigid, three-dimensional
rotators"; they were solved for systems of N
= 104 and 400 electrons by a finite-difference al-
gorithm, with time steps indicated in Table I.
The "natural" temperature-independent unit of
time which we use throughout is ~ = (~a'/e')"';
for n=10' cm ', &=2.7x 10 "sec.

Since it may be argued that the curvature of the
spherical surface might introduce systematic dif-
ferences with respect to the plane periodic sys-
tem, we have made a detailed comparison of the
static properties of our system with the MC re-
sults of Gann, Chakravarty, and Chester, ' who
simulated systems of 64 and 100 electrons with
periodic boundary conditions. The internal ener-
gies are compared in Table I, while the pair dis-
tribution functions are compared at 1 =90 in Fig.
1. The agreement is seen to be excellent, both
between results obtained with different system
sizes (and hence curvatures), and between the
present results and the data of Ref. 6. The struc-
ture factor S(q) (q =ak) can be calculated from
the pair distribution function by a generalized

2. "

4 r/a

FIG. 1. Pair distribution functions for I'=90 for 400
(solid line) and 104 (triangles) particles. The open cir-
cles represent the Monte Carlo results of Qann, Cha-
kravarty, and Chester (Ref. 6) using the Ewald method.

(2)
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in Fig. 2, for I'= 36 (N= 104) and I' = 90 (N= 104
and 400). As is clear from the curves, the func-
tion D(t) tends, in each case, to a constant after

Fourier transformation,

S(q) = 1+2x'f [g(x0) —1]sin8J, (x8q) d9,

where J, denotes the zeroth-order Bessel func-
tion and x =R/a; this reduces to the ordinary 2D
Fourier transform in the limit of zero curvature.

We now turn our attention to the self-diffusion
of the electrons. Let ((t) =arccos[u(t) ~ u(0)] be
the circular arc joining the initial position of an
electron to its position at time t on the sphere.
We have plotted our results for the function

TABLE I. MD results; N& is the total number of time steps generated
in each run; ~, is the cyclotron frequency protortional to the externally
applied magnetic field B; U denotes the excess internal energy. Note
that in. a MD computation the coupling constant I' is not fixed, but is de-
termined by the fluctuating average kinetic energy.

M/T Nq U/Nk~T
U/NkpT
(Ref. 5) D2

400 91.2 + 0.2
104 90.95+ 0.2
104 90.5+ 0.2
104 86.1+ 0.15
104 36.1 + 0.15
104 35.9+ 0.15

0.25
0.25
0,125
0.075
0.075
0.075

1600 0.0 —99.9 + 0.2
6400 0.0 —99.2 + 0.2
6400 0.0 —98.7 + 0.2
7200 0.0 —88.8+ 0.15
7200 0.15 —38.8 + 0.15
7200 8.0 —88.7 + 0.15

—99.6
—,99.8
—98.8
—88.9
—88.9
—38.7

0.014
0.018
0.018
0.047
0.041
0.046

0.014
0.018
0.014
0.048
0.048
0.046
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300 FIG. B. Normalized velocity autocorrelation function
for I = 86 (upper curve) and I'=90 (lower curve).

FIG. 2. The function d(t*) =x~($2(t~))/4t* for I' = M
and 90. The dashed curve for 1 = 86 is obtained by ap-
plying a magnetic field of B = 10~ G. In Fig. 3 we have plotted the normalized v.a.f. ,

an initial increase. According to the standard
Einstein relation for a two-dimensional system,
the constant is just the dimensionless self-diffu-
sion constant D, :

D, = lim D(t*). (4)

The asymptotic value D, is determined from the
horizontal plateau which extends roughly from t*
= 60 to t* = 200 for I' = 36, and from t~ = 120 to t"
=300 for I =90; the values are listed in Table I.
The relative statistical error is estimated to be
10%%uo, and the difference between the results for
N = 104 and N= 400 at F = 90 is well within the
combined error bars. Although we cannot rule
out that more accurate computations could detect
a weak (logarithmic) N dependence of the plateau
values D„as in the case of hard disks, we con-
clude that within the present level of accuracy
there is no clear indication of such a logarithmic
increase and that our data are compatible with

the existence of a self-diffusion constant for the
two-dimensional electron gas.

There is a decrease of D(t*) beyond the plateau
because D, is strictly speaking zero for a closed,
finite system, but the finite size is not responsi-
ble for the observed saturation of the function
D(t*), since the plateau is reached long before
the root-mean-square displacement of an elec-
tron approaches half the circumference of the
sphere. Converting the reduced (dimensionless)
values of the diffusion constant to absolute units,
we find at T = 1 K the values D, = 0.95 cm'/sec at
I =90 and D, = 5. 1 cm'/sec at I'= 36.

(u(t) u(0))
(5)

obtained for I' = 36 and I' = 90. The most striking
feature is the appearance of well-defined oscilla-
tions in Z(t); these oscillations are slightly more
damped in the weaker-coupling case, but their
period T~ appears to be essentially the same, in
reduced-time units, at I"= 36 and 90, i.e. , T~
= 5.27 or an angular frequency w~ -—1.2~ '. The
result is qualitatively reminiscent of the three-
dimensional classical electron gas (or "one-com-
ponent plasma" ), where Z (t) was found to oscil-
late at a frequency close to the plasma frequency
&~= (4me'n/m)'". " But while the three-dimension-
al result can be interpreted in terms of a coup-
ling of the single-particle motion to the longitu-
dinal plasma oscillations which are characterized
by the well-defined frequency O~ in the long-wave-
length limit, the two-dimensional result is more
surprising since the characteristic vk dispersion
of the plasmon mode' shows that there is no
unique frequency of the 2D longitudinal mode
when k - 0. We have checked that the oscillations
in Z(t) are not an artifact of the finite size of the
simulated system and hence of the curvature, by
comparing the v. a.f. 's for N= 104 and N=400 at
I =90; the two calculated curves agree very
closely.

It is worth pointing out that, because of the
curvature of the surface, there is no simple Kubo
formula relating the diffusion constant to the time
integral of Z(t). In fact, it is readily verified

981



VOLUME 4), +UMBER 14 PHYSICAL REVIEW LETTERS 1 OCToBER 1979

(6)

The standard Kubo formula is recovered from (6)
in the zero-curvature limit, when sin[-,'g(t)] can
be linearized. However, since & (t) appears to
decay rather rapidly and takes on sizable values
only for times such that sin'[-, g(t)] = ,'g(t)'—, it is
not surprising that the numerical values for the
reduced quantity

D, =—J Z(f*)dt*

lie very close to the diffusion constant, calculat-
ed from (3), as can be seen from Table I.

We have completed our MD study of the 2D elec-
tron gas by studying the influence of a magnetic
field perpendicular to the surface on the self-dif-
fusion of the electrons. The ratio of the Larmor
radius over a and the product of the cyclotron
frequency &u, =eB/mc (where B is in gauss and z
is the velocity of light) by the characteristic time
7 are both of order one for fields of a few thou-
sand gauss and under typical experimental condi-
tions (n= 10' cm '). Hence the cyclotron motion
of the individual electrons is characterized by
length and time scales similar to those of the in-
teracting electron gas. We have applied magnetic
fields such that ~,~=0.15 (typically B= 5000 G)
and +,~=3 (typically B= 10' G) at T'= 36, and the
results are given in Table I. It is seen that the
diffusion constant is not affected by the external
field, within the statistical uncertainties on D.
The v.a.f. is also unchanged.

The main results of the present work are an in-
dication in favor of the existence of a self-diffu-
sion constant in the two-dimensional, classical,
electron gas and the appearance of marked oscil-
lations in the v.a.f. at a frequency &~ which has
no obvious explanation. The difference between
the self-diffusion in systems with short-range or
long-range interactions may be due to the differ-
ent hydrodynamic behavior of the two classes of

fluids; in particular the longitudinal sound mode
in the former case is replaced by a plasmon
mode with a u k dispersion. Similar differences
in the 3D case lead to a very different asymptotic
behavior of the v.a.f."

The idea of avoiding periodic boundaries through
the use of a spherical surface has been suggested
by C. Isenberg at the van der Kaals Centenary
Conference held in 1973 at the University of Kent
at Canterbury, England.
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