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Melting of Two-Dimensional Vortex Lattices
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The existence of a new phase boundary for thin-film superconductors in an applied mag-
netic field and in rotating films of superfluid helium is predicted. The melting tempera-
ture is shown to lie below and scale with the zero-field vortex plasma transition temper-
ature.

At sufficiently low temperatures, an external
magnetic field of magnitude H„(film) &H &H,, ap-
plied normal to a thin-film superconductor will
induce a stable lattice of superfluid vortices in
the film. An analogous lattice, now rotating with
the sample, will be induced by the rotation of a
thin film of superfluid He about an axis normal
to the film plane.

The purpose of this paper is to point out that,
for sufficiently thin films of arbitrary area, the
energy needed to nucleate dislocation pairs in the
vortex lattice will become low enough for ther-
mal excitation of finite densities of dislocation
pairs to become appreciable at temperatures (T)
below the superfluid-normal-fluid transition tem-
perature. Because of the dependence of the
strain energy induced by dislocation pairs on the
logarithm of their separation, it is expected that
in the thin-film limit the rigidity modulus will
drop to zero at a critical temperature, T~, at
which the lattice melts.

The principal result of this paper is that this
critical melting temperature lies below and scales
with the temperature T,D, above which the zero-
field vortex plasma phase appears. ' Thus, in fi-
nite applied fields, the phase diagram for the thin-
film superconductor contains at least one addi-
tional phase boundary (see Fig. l) between the,
low-temperature state and the vortex plasma
state predicted by Doniach and Huberman. ' Above
the melting temperature of the vortex lattice,
there may or may not exist an additional "hexatic"
or liquid-crystal-like phase, ' in which, although
the positional correlation function of the vortex
lattice decays exponentially, the correlation func-
tion for orientational order of the lattice persists
at large distances. The stability of the hexatic
phase for T & T~ depends on the magnitude of the
Franck constant which is unknown for the vortex
lattice.

k sTa = jj a /87r (l v) ) (2)

where a is the lattice spacing and v the Poisson's
ratio. Since' the vortex lattice is incompressible,
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FIG. 1. Phase diagram of a two-dimensional super-
conductor in the magnetic-field-temperature plane.
D denotes the weakly diamagnetic Meissner phase with
no vortices present. I denotes the rigid-vortex-lattice
phase and I the vortex plasma phase. The shaded area
H indicates a possible hexatic phase.

The stress-induced interaction energy between
a pair of dislocations in the vortex lattice, whose
separation is large compared with the lattice con-
stant, may be calculated in terms of the rigidity
modulus, p, , of the lattice. Following Fetter and
Hohenberg, ' Fiory' and Conan and Schmid' have
shown that p is given for superconducting films
by

p =Br',/647t'X~,

where p, is the flux quantum kc/2e, B is the ap-
plied field, and X& =h. '/d is the thin-film penetra-
tion depth. For sufficiently thin films, the pres-
ence of a gas of thermally excited dislocation
pairs leads to a discontinuous drop of the ridigity
modulus at a temperature T„given by'
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T„/T„=l/4~MS. (4)

For superfluid helium films, the rigidity modu-

lus, in the rotating frame in which the vortex lat-
tice is stationary, ' may be written as

p = (hQd/8~)n«, (6)

where 0 is the angular velocity and nH, the vol-
ume density of the He atoms. Using the formula
k BT,n = z«'n, ' /I H, valid for films of infinite
extent' and identifying a '=(&3/2)(2M«Q/h), the
relationship given in Eq. (4) is seen also to be
valid for thin superfluid He films. It should be
noted that in the case of He films, Eq. (4) is in-
dependent of sample size R. For superconducting
films, on the other hand, Eq. (3) is only applica-
ble in the limit R «A. &. However, since the log-
arithmic nature of the interaction between dis-
locations is independent of the form of the vortex-
vortex interaction, we expect the melting transi-
tion to occur at T» as given in Eg. (2), indepen-

dently of sample size in the thin-film limit even
in the superconducting case.

As the film thickness is increased, Eq. (3) for
the 2D superconductor is no longer proportional
to film thickness but saturates as T»- T Bs. T„
will then continue to increase to increase with
film thickness until it approaches T Bcs. For very
thick films the dislocation core energy E, will
eventually become so large that the mean disloca-
tion pair density for T-T„, of order a 'exp(-E, /
k~T) will become extremely small, of order R ',
and so the concept of two-dimensional melting
will no longer be a useful one.

As the applied field is increased towards II„,
Eg. (l) for the rigidity modulus is no longer valid.
In this regime, Conen and Schmid' have shown
that

p = C(H, , '/8m) (1 B/H„)', -

Poisson's ratio is given by v =2.
Thus T„may be expressed directly in terms of

the zero-field transition temperature T» for on-
set of the vortex plasma state valid for supercon-
ducting samples of size R ~ X~ which is given

yl& 7 ~ 8

u, T„=(q,/4~)'(l/u, ) .
For a triangular lattice a '=~3n/2, where n is
the vortex density (n =B/p, ); this leads to a rela-
tionship between T„and T» which is independent
of applied field, and hence of the density of the
vortex lattice in the thin-film limit:

where II, is the thermodynamic critical field
and C is a constant with value C =0.353 for thin
films. Hence, as H-H„, T„/T, D approaches
zero quadratically in B (see Fig. 1).

For T &T„, Halperin and Nelson' have shown
that the hexatic-phase melting temperature is
given by

k BT„=K„(T„)/72

when K„(T) is the renormalized value of the
Franck constant at temperature T given approxi-
mately by K~-2E,a', where E, is the core ener-
gy of a disclination. Our present lack of knowl-
edge of E, for a vortex lattice means we are un-
able to say whether TH is greater than T„, and
hence do not know whether the hexatic phase ex-
ists. Concerning the experimental observations
of this phenomenon, we point out that the melt-
ing of the vortex lattice should have a significant
influence on the effect of pinning on flux flow in
thin superconducting films. For T -T& the exis-
tence of a lattice with a finite rigidity modulus
implies that a small concentration of pinning cen-
ters can inhibit motion of the entire vortex lattice.
Above T» on the other hand, the lack of rigidity
modulus means that pinning centers will be rela-
tively ineffective at impeding flux flow. There-
fore, measurements of the pinning current J~ as
a function of field and temperature can be used
to determine the value of p, . These experiments
could also determine the softening of the shear
modulus as T„ is approached from below, since
larger local fluctuations of the vortex lattice lead
to an enhancement' of J~. This lack of pinning in
thin superconducting films at temperatures ap-
proaching T» appears to be a common observa-
tion. '

The alternative possibility would be a direct
measurement of the shear rigidity modulus of the
vortex lattice using the method invented by Fiory. '
This technique is based on the fact that the dy-
namic fluctuations of the moving vortex lattice in
a superconducting film couple rf and dc motions
and currents, allowing for a determination of p,

as a function of field and temperature. Since
Fiory has shown that the existence of a finite ri-
gidity modulus manifests itself in the appearance
of steplike transitions in the field dependence of
the resistivity, the new phase boundary could in
principle be determined by the abrupt disappear-
ance of the steps at T„.

We have profited from useful discussions with
A. L. Fetter, M. R. Beasley, and L. Susskind.
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Enhancement of photoionization cross sections due to spatially varying photon fields at
a metal surface has been observed in the normal-emission cross sections for the surface
state and Fermi level of Al(100) at photon energies between 9 eV and 23 eV. The data for
Fermi-level photoexcitation are in excellent agreement with theoretical results for jellium.
Below N~&, the predominant contribution to the photoionization matrix element comes
from the spatially varying fields, which provide the momentum required for photoexcita-
tion.

In this Letter we present unambiguous experi-
mental evidence which shows that the spatially
varying photon field at a metal surface must be
taken into account in order to explain the magni-
tude and frequency dependence of energy- and an-
gle-resolved photoionization cross sections. As
seen in our data, this effect can be the dominant
mechanism for photoexcitation. Since energy and
momentum cannot be simultaneously conserved
in photoexcitation from a translationally invari-
ant electron gas, photoemission is usually attrib-
uted to the presence of a surface (the "surface
photoeffect") or the lattice potential (the "bulk
photoeffect"), either of which breaks translation-
al symmetry and can provide the momentum nec-
essary to overcome the kinematic restriction.
However, the structure in our data cannot be ex-
plained in terms of either the surface barrier or
lattice potential, and it is necessary to consider
the spatially varying photon field at the surface' '
as a source of momentum.

The discussion of the photoeffect given above
can be made precise by examining all of the con-
tributions to the cross section for photoexcitation

from an initial state g, to a final state' gt,
Qo.

dnd. =~, ~A. ~

where l&, (r) = gt*(r)V(;(r) —$,.(r)Vp&*(r) is the
transition current density and A(r) is the vector
potential of the photon field. ' In approximating
Eq. (1) it is usually assumed that the spatial de-
pendence of A(r) can be neglected since the wave-
length of the light is long compared with atomic
dimensions. This leads to the familiar dipole
matrix element which in a single-particle model
may be written in terms of the crystal potential'
V(r):

(2)

What V'V does is to furnish the required momen-
tum so that both energy and momentum can be
conserved in photoexcitation. The assumptions
leading to Etl. (2) are incorrect when the dielec-
tric response of the solid to the incident electro-
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