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for shallow acceptor to be considerably shorter.
This is consistent with the interpretation given
here that the stimulated echo arises predominant-
ly from the indium sites with gp, BH «&.

The results of the present investigation can be
summa, rized as follows. (i) The generation of a
backward-wave phonon due to the parametric mix-
ing of a forward wave and a microwave field has
been detected in indium-doped silicon. (ii) The
backward-wave phonon spectrum as a function of
magnetic field has been measured and used to
identify the source of the nonlinearity as reso-
nance transitions within the neutral-acceptor
ground state. (iii) The frequency, magnetic field
magnitude and orientation, microwave power,
and temperature dependences are all consistent
with this interpretation. (iv) The narrow peak at
II =0 (Fig. 1) is not yet understood and there is
some evidence that at higher temperatures (T
= 10 K) a relaxation interaction dominates over
the resonance process. (v) The dependence of
the strain and electric field matrix elements on
the zero-field splitting reduces the inhomogene-
ous broadening, making possible the resolution
of individual transitions. (vi) The spin-lattice re-
laxation time was measured at 1.35 K using a
new form of transient-population-grating spec-
tr oscopy.
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The possibility of Bose condensation into the lowest-energy, extended, Hartree-Fock
eigenstate in the presence of a random potential is studied. Using the existing folklore
about Anderson localization, and adding interactions, we find that the fluctuations are
logarithmically divergent and that stable broken symmetry is impossible for n -2.

In recent years there has been considerable in-
terest in the understanding of collective phenome-
na in random systems such as spin-glasses and
disordered magnets. One approach' is to do per-
turbation theory simultaneously in both the dis-
order and the interactions between modes which
are independent in mean-field theory. These cal-
culations are only valid near four dimensions in

systems with sufficiently small interaction strength
and disorder. 2 They cannot shed light directly on
the possibility of other sorts of critical points or
more exotic behavior outside this domain. A par-
ticular example of this sort of behavior is a spin-
glass transition to a state characterized by an Ed-
wards-Anderson order parameter. This possibil-
ity has been studied by several authors who have
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examined various models in mean-field theory. ' '
Despite several years of intense theoretical ef-
fort, the stability and fluctuations of the Edwards-
Anderson order are not completely understood in
any of the models that have been studied.

In an effort to circumvent this impasse, we in-
vestigate an alternative theoretical approach that
is appropriate for systems with moderate or
strong disorder. It is based on a picture intro-
duced by one of us' several years ago, in order
to describe certain features of spin-glass materi-
als. This was before any strong experimental
evidence for a sharp transition' existed. The ba-
sic idea was to identify the normal modes of a
random spin system with the localized eigenstates
of single-particle localization theory. ' The ap-
parent failure of the thermodynamic functions to
exhibit any sharp behavior was explained by the
absence of phase transitions in finite systems.
The current use of this picture' would then associ-

~

ate the spin-glass transition with the mobility
edge while the random, frozen magnetization pat-
tern corresponds to the first extended eigenstate
of the exchange matrix.

In this Letter we describe explicit model cal-
culations for the suppression of instabilities cor-
responding to localized modes, the possible phase
transition at the mobility edge, and the destruc-
tion of long-range order in the first extended
state by generalized Goldstone modes. The mod-
el may be applied to random spin systems, dirty
ferroelectrics, ' or a Bose fluid in a random po-
tential. In the first two cases one would look for
a phase transition as the temperature is lowered.
In the latter case we envision raising the chemi-
cal potential. We will use, for simplicity, the
language of the spin-glass transition.

The model is described by an effective Hamil-
tonian with a random exchange term and a quar-
tic, on-site interaction. We write"

(2)
mym2m3m4

where

Z= f a'S epx[ T-~-[-,' Z (T&„„,-J„,„,)S„, 5„,+!UZ(5„,')'j),

where 5„ is a soft n-component spin on the site x. For Bose systems the matrix Tl —J is replaced by
II- p1, where II is a single-particle Hamiltonian, and p, is the chemical potential. Note that when J
is translationally invariant, (I) exhibits a mean-field transition when T equals the largest eigenvalue
of J.

We transform to the basis, Im), of eigenstates of J so that

Z = f 5~8 exp( T~[-2+ (T —J'„)I 2+ 4 p U g 'N )(5 '5 )]j,

&. . . , = nz'. 4,(x)4,(x)4,(x)(,(x) (3)

and the g (x) are the eigenfunctions of J. Although
the explicit diagonalization of the matrix J is gen-
erally impossible, the general features of its
spectrum are fairly well understood. ' We will
assume that the spectrum has a mobility edge
which divides extended states from localized
states. The specific properties of these states
will be discussed as they are needed.

Stability requires that the eigenvalues of the
susceptibility matrix y, ,» = T '($,"S ") be
nonnegative. The Gaussian approximation to (2)
satisfies this requirement as long as the tempera-
ture is greater than the largest eigenvalue of J.
In a nonrandom ferromagnet this eigenvalue cor-
responds to a uniform mode. When the tempera-
ture becomes lower than this value, stability is
restored by means of a finite magnetization in
this eigenstate. (In the Bose fluid, this is the
macroscopic occupation of the k =0 state. ) As
noted in Ref. 6, this mechanism cannot apply to

the state with the largest eigenvalue of J since it
is localized. This is perhaps even more obvious
for the Bose system. A macroscopic number of
particles in a localized volume will result in a
prohibitive cost in repulsive energy.

These ideas find an explicit realization in a
Hartree-Fock approximation to our model. We
define the Green's function, G =Tg. The Hartree-
Fock Hamiltonian is

&xp] H"
i
x'p'&

=[J„„, &P,G„„"~„„,]~„„,-nG„„»'~„„,, (4)

where G =(I -H" /T) '. Rotational invariance
ensures that the self-consistent eigenstates,
lmo), are n-fold degenerate. We note that the
corresponding wave functions, 0 ~g(x) need not
have trivial structure in the component indices;
that is, the polarization may vary with position.
We can always represent 4- (x) as the product of
a rotation matrix g"-"(x) with a scalar function
0 -(x)~ In this basis, "the Hartree-Fock Green's
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function is

G =(1 —j /T+(n+2)/T 'Xi„U„~„„G„„)', (5)

where we have dropped the tilde and the spin in-
dices.

For highly localized states all terms other than
the self-interaction term may be neglected, and
G can be obtained explicitly:

J~- T+ [(J~ —T)2+4(n+2)U ~ „T]~~
( )

2(n+ 2)U

which remains positive. As we near the mobility
edge, terms other than those with m equal to n
make more sizable contributions. But as long as
the state (m) is localized its contribution is al-
ways present and finite. Therefore, our stability
argument is still valid since the presence of G in
the denominator of (5) limits the growth of the ex-
pression as T is lowered, and stability is main-
tained.

Let us briefly return to the effective Hartree-
Fock eigenstates. We can say that the spectrum
is distorted from its noninteracting form so that
all of the eigenvalues remain less than T. Of
course, the basis that we are using is also tem-
perature dependent, but it should have the same
general features as the original. Let us examine
the situation near the mobility edge somewhat
more closely. For localized states with long lo-
calization lengths, we expect the general struc-
ture of the self-energy to be similar to that for
extended states of a finite system whose size is
roughly the localization volume &". That is, the
difference between the self-energy for an extend-
ed state near ~, and that for a localized state just
the other side of the edge is the difference be-
tween an integral and a Riemann-sum approxima-
tion to that integral. The typical discrepancy can
be measured by the value of a single term, such

as the one retained explicitly in (6). From this
we conclude that the extra self-energy shift given
to localized states near &, is proportional to
uk "ocu(s —e,)"where v is the localization length
exponent. Thus, for v&d ' localized states right
near the edge do not get pushed across it, al-
though states farther away may be. Singular be-
havior in p" is averted since the states will be-
come extended if the density becomes too great.
Therefore, since calculations show that v& 1/d, t4

we expect the mobility edge to retain its identity
with a continuous density of states as one crosses
it. The distortion of the spectrum is indicated in
Fig. 1(a) and 1(b).

If and when T ever reaches the mobility edge
f Fig. 1(c)], the situation is drastically changed.
At this point all of the Hartree-Fock states are
extended, and every term in the sum in denomi-
nator of (5) will make a contribution of order N ',
where N is the number of spins in the system.
The argument used above no longer guarantees
stability.

Can we then expect a phase transition below
which the first extended eigenmode acquires a
spontaneous, frozen magnetization? If e =1, we
see no reason why this should not be the case, in
agreement with Anderson and Pond. ' As T is
lowered below the critical temperature, the mac-
roscopic occupation of the state at the mobility
edge stabilizes the fluctuations of all the other
states, just as in the Ising model. If, however,
n & 1, we must reckon with Goldstone modes.
Just as in the nonrandom problem, the equation
of state, which determines the magnitude of the
order parameter, implies the divergence of the
transverse fluctuations of the order-parameter
mode IFig. 2(a) and 2(b)]. Thus G o: (e, —J "F) ',
where J is the Hartree-Fock eigenvalue of
mode lm) and e, is the mobility edge. When we
compute the self-energy due to a loop of these
Goldstone modes,

ii p(e) (ip (e) (i p (e)
HF~E U /(s g HF)~ f p ( )d (7)«oo
C

Ec e, t
T

(bI

&c=T

(c)

(0) (s )

FIG. 1. Hartree-Fock density of states at three dif-
ferent temperatures (schematic): (a) For high T, pH"
=p =density of eigenvalues of J; (b) for intermediate
T, tail of localized states moves to keep to the left of
T; (c) for T reaching the mobility edge, no localized
states remain.
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(b)

FIG. 2. (a) Equation for order parameter (8 ).
((mo& is the first extended HF eigenstate. ) (b) Equation
for transverse self-energy in presence of finite (g g.
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we obtain a logarithmic divergence, because the
Hartree-Fock density of states p, ""(e) is slowly
varying near c,. Thus, the collective modes de-
stroy the order; the first extended eigenmode
cannot be macroscopically occupied. The insta-
bility is qualitatively like that which occurs in
two-dimensional nonrandom systems, where p(&)
is also constant near the band edge. Our picture
can thus be viewed as a kind of "dimensional
transmutation" at a critical temperature where
the critical fluctuations change from something
essentially zero dimensional in character to
something rather two dimensional. We note that
this result does not depend on dimensionality ex-
cept insofar as it involves the existence of the
mobility edge. We note that some recent work"
indicates that there is no true mobility edge for
d=2.

This picture has several attractive features in
application to spin glasses. First, the near di-
vergence of the susceptibility associated with the
localized states finds a natural physical interpre-
tation in terms of spin clusters. " As far as we
know, cluster effects are universal in spin glass-
es. Furthermore, the way the localized states
get pushed across the mobility edge and become
extended by mixing with the already extended
states provides some theoretical underpinning
for the picture of intercluster coupling introduced
in the phenomenological cluster theory. " Second-
ly, one would like to associate the fact that the
potential order is marginally unstable with the
observed fragile nature of the spin-glass state. "
Third, the constant density of states near the mo-
bility edge accounts for a linear specific heat.
Nonlinear behavior of the specific heat at very
low temperatures finds an interpretation in terms
of a picture where T has not quite reached E,.
And finally, this approach allows us to study a
kind of random ordering while avoiding the path-
ologies of the Edwards-Anderson order.

We have to admit that we do not know the do-
main of validity of this theory. While our ap-
proach formally treating the randomness exactly
and doing perturbation theory in the anharmonicity
of the fiuctuations) appears to give a universal re-
sult, independent of the type or degree of random-
ness, it is obvious that one can instead do a bet-
ter (nonperturbative) job on the anharmonicity
and attempt to treat the disorder perturbatively.
References 1 and 2 are just this sort of calcula-
tion, and they give a qualitatively different sort
of result. Empirically, it is apparent that dis-
ordered magnets comprise several universality

classes, depending onn, d, and the type and de-
gree of randomness. Here we only hypothesize
the existence of a class (including spin-glasses)
to which the foregoing description applies. Or-
dinary, slightly disordered ferromagnets pre-
sumably belong to a different class, described
by Ref. 1 and 2. Unfortunately, to find out into
which class a given system falls would require
a reliable treatment of both disorder and anhar-
monicity, and no method of doing such a calcula-
tion is known.

Of course, our argument only rules out broken
symmetry characterized by (S„,) &0. It cannot
tell us (just as its counterpart for nonrandom
systems cannot single out the special case n =2
for d =2) whether there is a transition to some
state without this kind of order. The answer to
this question depends on understanding topological
excitations in random systems, which may be
quite different from their nonrandom counter-
parts. "

It would be attractive to apply this picture to
nonuniform He films, but the situation is cloud-
ed by the possible nonexistence of a mobility edge
for d =2. Nevertheless, one does expect" a rath-
er narrow crossover from exponential to logarith-
mic behavior in this case, so one might still be
able to observe effects of virtual order and its
fluctuations which were qualitatively similar to
what one would find if the edge were sharp.
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We demonstrate here that nonlinear mixing of four surface-plasmon waves can be used
to probe the Raman resonances of liquids. The results are in good agreement with theo-
retical prediction. The technique should be useful for surface studies.

The propagation of surface electromagnetic
waves on solids and their applications have re-
cently attracted considerable attention. ' They
have been used to study adsorbed molecules' and
overlayers on surfaces, ' to probe phase transi-
tions, 4 etc. In most cases, linear optics is em-
ployed in the excitation and detection of the sur-
face waves. Observations of nonlinear optical
processes involving surface electromagnetic (EM)
waves have been rather rare. Simon, Benner,
and Rako' have used the linearly excited surface-
plasmon wave on metal films to generate a bulk
second-harmonic wave. DeMartini eI; al. ' have
used the mixing of two bulk waves to generate a
surface EM wave, and have used the mixing of a
bulk wave and a surface wave as a means to de-
tect the surface wave, Since high-intensity sur-
face EM waves can be readily excited, one would
expect that pure surface nonlinear optical effects
(i.e., all input and output optical waves are sur-
face waves) should also be easily observable. In
this paper, we present the first results of such
an experiment on the mixing of four surface-
plasmon waves. '

The process we have been studying is the sur-
face coherent anti-Stokes Raman spectroscopy
(CARS). Two surface-plasmon waves at e, and
w, propagate on the plane boundary surface be-
tween a metal and a dielectric medium with wave
vectors, (k,) ~~

and (k,) ~„respectively, parallel
to the surface. These waves interact on the sur-
face via the third-order nonlinearity in the me-
dium to produce a third-order nonlinear polariza-
tion at ~,= 2w, —a2 which in turn generates a sur-
face anti-Stokes plasmon wave at cu, . This anti-
Stokes generation will be phase matched if (k, ) ~,

= 2(k, )
~~

—(k2) ~„and will be resonantly enhanced
if co, —cu, approaches the resonant frequency of
some excitation in the medium. Therefore, just
like bulk CARS, the surface CARS can also be
used as a spectroscopic technique to study the
resonances in a medium.

The theory of surface CARS is a straightfor-
ward extension of the theory on nonlinear genera-
tion and detection of surface polaritons developed
earlier. ' Suppose the Kretschmann geometry'
[Fig. 1(a)] is used for excitation of the surface
plasmons. The dispersion relation of the surface
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