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Filamentation Instability of Electron and Positron Colliding Beams in Storage Ring
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The filamentation instability of the electron and positron colliding beams in a storage
ring is investigated within the framework of the Vlasov-Maxwell equations, and a closed
algebraic dispersion relation for the complex eigenfrequency cu is obtained. It is shown
that the typical growth rate of instability is a substantial fraction of the electron plasma
frequency cu&, . For parameters characterizing the recent colliding-beam experiments at
DESY, the instability threshold is marginally satisfied.

There is a growing interest in the stability
properties of the electron-positron colliding
beams in a storage-ring facility. " A recent ex-
periment with colliding electron-positron beams
at DESY has shown the broadening of the beam
cross section, suggesting an instability of collec-
tive modes which may limit the achievable inten-
sity. ' Perhaps one of the most important insta-
bilities of the electron and positron colliding
beams in a storage ring is the filamentation in-
stability. The unstable modes propogate nearly
perpendicular to the beam with mixed electro-
static and electromagnetic components, the latter
destabilizing and the former stabilizing. The
perturbed magnetic field is mostly in the plane
perpendicular to the beam and the Lorentz force
causes the beam to filamentate, similar to the
Weibel instability. Unlike the Weibel modes,
which are purely electromagnetic for counter-
streaming electron beams, the linear perturba-
tions of colliding electron-positron beams cause
both charge and current perturbations giving rise
to mixed polarizations. Furthermore, for the
case of colliding beams with radial dimension
smaller than the collisionless skin depth c/&u~,
the finite geometry becomes important and the
usual assumption of an infinite, homogeneous
medium is no longer valid.

In this Letter, we treat the filamentation in-
stability of colliding electron-positron beams
with finite-geometry effects included. For sim-
plicity, we assume that this colliding beam is
straight and infinite along the axial direction.
The analysis is carried out within the framework
of the Vlasov-Maxwell equations. An important
conclusion of the present analysis is that the
typical growth rate of the filamentation instability
is of the order of the electron plasma frequency
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FIG. 1. Equilibrium configuration. and coordinate
system.

co~„ thereby severely limiting the electron den-
sity in a storage ring.

As illustrated in Fig. 1, the equilibrium con-
figuration consists of intense relativistic elec-
tron and positron beams propagating opposite to
each other with axial velocity P~ce, for the posi-
tron beam and P, ce, for the electron beam,
where e, is a unit vector along the z direction,
c is the speed of light in vacuo, and P~= —P, .
Moreover, both beams have the same radius A,
and the same characteristic energy y~mc'. It
is also assumed that the ratio of the beam radius
to the collisionless skin depth c/or~ is small,
l.e.)

v e' 1~=¹, 2
—&&1,
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where j=e, p denote electrons and positrons, re-
spectively, v, is Budker's parameter, N,. = 2r
x f,

"drrn, '(r) is the number of particles per unit
axial length, n, (r) is the equilibrium particle
density of beam component j, -e and m are the
charge and rest mass, respectively, of electron.
As shown in Fig. 1, we introduce a cylindrical
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polar coordinate system (r, O, z). For simplic-
ity, all equilibrium properties are assumed to
be azimuthally symmetric (&/88=0) and inde-
pendent of axial coordinate (c)/&z = 0). There are
three constants of the motion: the total energy,
H = (m'c'+ c'p')' '+e, y, (r); the canonical angular
momentum, Pe rpe—-, and the axial canonical
momentum, P, =p, +(e, /c)A, '(r). Here, y, (r)
is the equilibrium self-electric potential, A, '(r)

is the axial component of vector potential for the
azimuthal self-magnetic field, e,. is the charge
of particles of beam component j (i.e. , e, = —e
for j=e and e, =e for j=p), and p denotes mechan-
ical momentum and is related to the particle
velocity vby v=p/[m(1+p'/m'c') ']. For beams
of well-defined energy and momentum, an equili-
brium associated with the rigid-rotor beam-dis-
tribution function, '

f,o(x, p) = ' 5(H —&u, Pe —y, mc')5(P, —y, mP, c),
2~'Yam

is particularly suited for stability analysis where 6, is the particle density at v=o, the constant co, and
y~mc' are the rotation frequency and the total energy in the rotating frame of beam component j, re-
spectively.

Since the r- 0 kinetic energy of particles is small in comparison with the characteristic axial ener-
gy y~mc', it is straightforward to show that the term H u&, pe in —Eq. (2) can be approximated by~'5

H —&,Pe= y, mc'+p ~'/2y, m+ 2 y, mQ„'r ',
where

y, '=(1 —p~') ', p,'=p„'+(pe-y, m(u, r)',

0& ——(u, —u, ) (&u, + u, ) = —cu, ' -(2we, /y ~m)P„n~e „(1—P, P„)

is the square of the betatron frequency, and the laminar rotation frequency ~, is defined by

&3,. = [(-2', /y~m)g, n~e„(1 —P, P, ) ]~'.
Here the subscript k=e, p,

Substituting Eq. (3) into Eq. (2), we find the equilibrium particle density profile n„'(r) =n, for 0 (r
(ll, and n, '(r) = 0; otherwise, where the beam radius R~ is defined by

H, ' = 2c'(y, —y, )/y, n, ' (4)

for j=e,p. Equation (4) ensures that the electron and positron beams have the common beam radius
It is important to note from Eq. (4) that the radially confined equilibrium exists only for the rota-

tional frequency ~, satisfying -~, & ~, & e, . Additional equilibrium properties associated with the dis-
tribution function in Eq. (2) are discussed in Ref. 4.

We make use of the linearized Vlasov-Maxwell equations to obtain the dispersion relation for fila-
mentation instability of the electron and positron beams. For perturbations with aximuthal harmonic
number l and axial wave number k„a perturbed quantity 5C(x, t) can be expressed as 54(x, t) = 4 (r)
&&exp[i(l8+k, z —~t)], where ~ is the complex eigenfrequency. The present stability analysis is car-
ried out for long parallel wavelength and low-frequency perturbations satisfying k, 'll~'«l', ju&&jc('
«l . With this assumption, the axial components of perturbed fields F.,(r) and B,(r) are negligible
and the Maxwell equations of perturbed potentials can be expressed as

(
1 8 8 l'——r ———q(r) = —4~@(r)r sr sr

and

1 8 8 l' - 4v——r ———,A(r) = ——J,(r),
C

where y(r) is the perturbed electrostatic potential, p(r) is the perturbed charge density, and A(r) and

J,(r) are the axial components of the perturbed vector potential and current density, respectively.
Components of perturbed fields can be expressed in terms of y(r) and A(r) as Ee -— ily(r)/r, B„-(r)
= -(8/Sr) j(r), B„(r)= ilA(r)/r, and Be(r) = (&/&r)A(r—)
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In order to calculate perturbed charge and current densities, we solve the linearized Plasov equa-
tion' to obtain the perturbed distribution function

e m 0

f, (r, p) = '- ~ ' 1g, (r)+(&u —l&u„—k, p, c)f d7 ip, (r') exp[il(6' —6) —i(&u —k, p, c)z]),
J l.

(7)

where the perturbed electrostatic potential p~(r) in frame of reference moving witn velocity p,c is de-
fined by y, (r) = y(r) —p, A(r) and use has been made of p, /y, m = p, consistent with Eq. (1). It is useful
to introduce the polar momentum variables (p~, y) in the rotating frame defined by'' p„+yama, y
=p ~ cos 9, p, —y, m&u, x =p, sing. Note also that the Cartesian coordinates (x, y) are related to the
polar coordinates (r, 6) by x =rcos9 and y =rsin9. In this context, the transverse equation of motion
of particles can be expressed as'

x'(r) =(1/&u, )[(p~/y~m)cosysin~p —rv, sin9sinu, a+re, . cos9cosw, . T],
y'(T) =(I/~ )[(p,/y, m) sin9 since T+r~, cos9sin~ T+ r&u, sin9cos~ T],

where 7. = f' —f, and the harmonic frequency ~, is defined in Eq. (3).
Upon integration of Eq. (7), the perturbed charge density can be found to be

0

p(r) = 2ve'5~y, m dp ~p~ dp, —
' [g, (r) + (&u —lu, —k, p, c)I, ],

0 ~ P J- Pl- (9)

where the orbit integral I, is defined by

2' dy Q

dT j,. (r') exp(i[l(9' —6) —((u-k, Pc)~]]. (10)

Similarly the perturbed axial current density can be obtained. It can be shown in subsequent analysis
that Eqs. (5) and (6) with Eq. (9) support a class of solution' in which the perturbed charge and current
densities are equal to zero except at ~=A, . In this regard, we will consider here a class of special
solutions for which the perturbed charge and current density are localized on the beam surface. More
general perturbations are to be presented in a subsequent publication. In this case it follows from Eqs.
(5) and (6) that the function i!I„(r) has the simple form g,(r) = y(r) —p, A(r) =C„r' for 0&r &ll, . Here C,
=d, —P, d„and d, and d, are constants. Substituting Eq. (8) into Eq. (10), it is readily shown that

I, =i(,.(r)(2u,.) f . d7 exp[ —i(&u —k,Pc)T] [(u, + &2, ) exp(ie, r) —(cu, —0, ) exp(-iu, v)] .
After some straightforward algebra that utilizes Eqs. (2) and (13), Eq. (9) can be expressed as

1——r ———, j(r) = —P q,(r) r, ((u) 6(r -Z, ),

where su~, '=4ze'n, /y, m is the square of the plasma frequency of beam component j, 0,'=(a, —&u~)(~,
+ ~,) is defined in Eq. (3), and I',(~) is defined by

2~, „,n!(l —n)! u —k.P, c+l~, —2n&u, &0, —~, (12)

Similarly, Eq. (6) can be expressed as

——r ———, A(r) = —Q P, y, ( ) rI', (u))5(r —R„),
y gy. ()y y2, ~ ~ Q .2P~

(13)

where use has been again made of the approximation p, /y~m = p„c consistent with Eq. (1).
As the right-hand sides of the coupled differential equations (11) and (13) are equal to zero except at

the surface of the beam x= R„, they can be solved in a straightforward manner to give

C~=Q, (1 —P~P, )((uq„'/2lQ, ') I',(u))C, , k =e and p. (14)
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In the case when the beams are located inside the
cylindrical conducting wall with radius A„ the
term C, in the left-hand side 'of Eq. (14) is re-
placed by [1-(R, /R, )']"'C,. Note that the abso-
lute value of &u~,'I', (&a)/0, ' in Eq. (14) is of the
order of unity or less. It follows from Eq. (14)
that the condition for a nontrivial solution (C, not
all zero) is given by

1 —(u)~,' (u„'/l' n, ' n, ') I",((u) I; (cd) = 0, (15)

where use has been made of P~= -P, = 1 and yc,
«1, which is consistent with present experi-
mental parameters. Equation (15) when combined
with Eq. (12), constitutes one of the main results
of this Letter and can be used to investigate fila-
mentation-stability properties for a broad range
of system parameter s.

In order to make the st,bility analysis tractable,
we restrict the investigation of disyersion rela-
tion (15) to the case where both beams are in a
cold- fluid rotational equilibrium chara, cter ized
by ~,. -+~, A careful examination of expression
for I',(~) shows that'

b2 2 —x/2 +2+ y2 j4t'2

(d
(16)2(~ —k, p, c + f'cu, )[v —k, p,c + (l —2)~,] '

Moreover, we also assume that both beams are
in a slow rotational equilibrium and have the
same density, thereby giving ~~= -cv, = ~,= a~
and &3, = ur&, -—(4', e'/y~m)' '. Substituting Eq.
(16) into Eq. (15) and defining a=k, c+l&u~„b
=k,c+(l —2)~~„we simplify the dispersion rela-
tion in Eq. (15) as (ccrc' —a')(cu' —fc') = co~, ', which
provides a necessary and sufficient condition co~.,
&a'b'=(k, c+lcu~, )'(k, c+l~&, -2'~, )' for instabil-
ity. For the unstable branch, the perturbation is
purely growing with the growth rate

The maximum growth rate of instability can oc-
cur at a = 0 or 5 = 0, thereby giving (&u;) = (5'~'
—2)'~'e~, —0.5~~„which is apparently indepen-
dent of the azimuthal harmonic number' l, The
stability analysis of Eq. (15) for a broad range of
rotational frequency ~,. is currently under in-
vestigation by the authors.

For colliding beams interacting over a finite
dista, nce L,~, k, = 2&m/L,

~
(m = 1, 2, . .. ) and the

condition for a =0 becomes L ~~(u~, /c) =27cm/l.
The finite interaction length also imposes a se-
vere condition for the instability to grow signifi-
cantly before the bea. ms exit; (i) 'L ~~/c ) 1 Fol
parameters characteristic of recent colliding-
beam experiments at DESY, ' 8.5-0ep (y, = 17000)
electrpns and positrons of 10"particles with
cross Section 10 cm' and interaction length 2

cm, the density n=5X10c5/cm', and the growth
rate is about a, =10'~ sec '. Because the i:nter-
action region is limited to a length of L = 2 cm,
the above condition is marginally satisfied and
the system is just over the instability threshold.
Nonlinearly the beams become filamentated first;
then the current filaments of the same sign at-
tract each other to form a broader beam.
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