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This paper discusses a first-order SU(S) theorem relating the weak and electromagnet-
ic form factors of the pseudoscalar mesons with an error of second order in the symme-
try breaking. Recent measurements of the A, X, and z mean square charge radii
open the possibility of testing a prediction of this theorem in the near future.

In this short paper I discuss a theorem relating
the weak and electromagnetic form factors of the
pseudoscalar mesons, for a large range of mo-
mentum transfers, with a forrnal error of second
order in the SU(3) breaking. Although, with a
modification to be explained below, this result
has been derived some time ago, ' the possibility
of its verification appeared very remote at that
time and it has remained largely unknown. Re-
cent measurements of the ~, K, and K' mean
square charge radii' ' indicate the possibility
of testing an interesting relation implied by the
theorem. On the theoretical side, the fact that
theorems of this class are valid for arbitrary
momentum transfers, modulo certain qualifica-
tions described later on, offers the possibility
of studying the nature of SU(3) breaking in the
matrix elements of current operators in novel
and, perhaps, more probing ways.

The theorem states that

f,'"' ' '(~)=-'[F""(~) F" '(t)1 F" '(t)

--'.[F"'(t)].,+ o(~,'), (1)

where f, ~ ' (t) is the first-class form factor
in the K'- m amplitude; F'~ (& =&,K, K )»e
the electromagnetic form factors of m', K', K';
[F ~(t)]„, is the contribution to F' '(t) (K=K' or
K') of the unitary singlet component S„of the
electromagnetic current; t=q' is the invariant
momentum transfer; and X, is the parameter that
describes V-spin breaking.

It is of course immaterial for physical applica-
tions whether we regard the error as being of

second order in V-spin or SU(3) breakings, as
these are of the same order of magnitude. In

deriving this theorem I assume that SU(3) is
broken by an operator ~h, transforming as the

eighth component of an octet, but otherwise I
work in the limit of isospin invariance. Further,
I take the electromagnetic current to be of the
form 8&"——4'„'+ (1/W3)&„' S„+, where S„ is a
unitary singl. et operator. In Ref. 1 it was as-

sumed that S& does not exist and Eq. (1) was ob-
tained without the unitary singlet contribution on
the right-hand side. The structure of the modern
gauge theories and the successful phenomenology
of the new family of heavy mesons strongly indi-
cate the existence of an S„component constructed
from the heavy-quark fields: S„=~[cy„c+ty&t]
——,'by&b+. . . . These unitary singlet contributions
have the following properties:

(i) They vanish at t=0 because JS, d'x is a sum
of terms proportional to the various heavy flavor
number generators and their matrix elements be-
tween ordinary hadrons are zero.

(ii) They vanish in the SU(3) limit [for example,
(K'IS„IK')= —(K IS&IK ) by charge-conjugation
invariance and (K'IS„IK') =(K IS„IK ) in the
SU(3) limit].

(iii) They are forbidden by Zweig's rule, the
lowest-order quark diagrams involving the crea-
tion of heavy qq pairs which couple with the light
quarks via three intermediate gluons. In this
case, the quark loop diagrams are finite and

vanish in the limit rn, , m, ', . . .-~.
(iv) Current phenomenology indicates that S„

has large matrix elements between the vacuum
and the appropriate members of the new family
of heavy mesons while there is no evidence of
coupling to ordinary hadrons. If we assume that
the imaginary parts of the unitary singlet form
factors are dominated by the heavy mesons, then
the values of the form factors at low momenta
will be greatly suppressed by the large masses
of the bosons and their very weak coupling to or-
dinary hadrons (see, for example, Ref. 12),
These arguments suggest that the contributions
of the unitary singlet term in Eq. (1) can be safely
neglected, at least in the physical region of the
weak decays.

Before discussing the implications of Eq. (1) I
give, somewhat schematically, a more compact
derivation than that developed in Ref. 1. The
proof proceeds in two simple I emmas:

Lemma 1.—We write B'(x) = H, (x)+Ah, (x)
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=EI,(x)+A,v, (x)+X,v, (x), where H, is SU(3) symmetric and the symmetry-breaking term Xh,(x) is de-
composed into V-spin singlet (A.,v, ) and triplet (A.,v, ) components. We may regard the V-spin symmet-
ric part H, (x)+ A.,v, (x) as the unperturbed Hamiltonian density and study the perturbative expansion in
powers of X3. In particular, consider the first-order response of the K'-m form factors to the per-
turbation A. 3v 3".

vv ~ "'
~( p,p') = —i&, iim ( J d' ye" ',&~ (p')IT[~„(y)v, (0)]IK'(p)&.—fM„(p, p', q)), (2)

where 4„=Z„~-iJ„', q =—p -p' is the four-momentum transfer, la), (a =K', ~ ) are the eigenstates in
the limit of V-spin symmetry, and 6M„subtracts in an appropriate manner the mass insertions of the
perturbation in the external legs. ' As explained in Befs. 7 and 8, Eq. (2) includes the corrections to
the field renormalizations associated with the external legs with correct factors as well as the correc-
tions induced on the zeroth-order form factors in going from the unperturbed to the corrected mass
shells. As Eq. (2) is explicitly of order X„we can work in the V-spin limit and consider, in particu-
lar, the symmetry transformation G„=Cexp(Arv, ), where V, =I', is the second generator of V spin. Un-

der G„:v, ——v„ IK'(p)&, -lv'(p)&„ l~ (p')&, -- IK'(p')&, while J„remains unchanged. Thus, the first
term of Eq. (2) equals

j,e"'.&K'(p')I 7 [~„(y)v.(0)] I ~'(P)&. = J,e"'.&~ (-P)I7'P„(y) v.(o)] I
K'(-P ')&., (3)

where the last equality follows from the substitu-
tion law. After verifying that 5M~(p, p', q) satis-
fies~ in our case the same symmetry relation
[namely 5M„(p,p', q) =5M„(-p', -p, q)], we ob-
tain

(4)5V„' (p,p') =5V„(" " (-p', -p).
If we write 5V„~" ' ~(p,p')= 5f+(t)(p+p')„
+Sf (t)(p-p')„, where 5f, (t) represent the
first-order corrections to the form factors, Eq.
(4) implied

5f, (t)=0
while it gives us no information about 5f (t ).

Thus, we obtain the lemma that the physical
form factor f, ' '(t) equals its V-spin limit
with an error of second order in X3. Note that
the momentum transfer is left invariant in Eq.
(4) and is furthermore arbitrary so that these
results are formally valid for any t [see, how-

ever, the observations below].
I,enema 2,—We consider the diagonal matrix

elements of the conserved current V„'=-,'[J„'
+v 3 J„']associated with the third generator of
V spin:

To prove Eq. (7) we first note that the correc-
tions of first order in A.,v, to f' & and f ~~ ~ are
given by diagonal expressions analogous to Eq.

& (p')I v„'I (p)& =f"(t)(P+P')-„ (8)

where la& = 1K'&, I m & represent the exact physical
states, and find

f," ' '(t)=f' '(t)-f'" '(t)+o(~,').

(2) with J„-V„'. Under the symmetry operation
exp(imV) both V„' v, change sign so that

,&~-(p')IT [v„'(y) v, (o)] l~ (p)&,

=.&K'(p')I T [v„'(v)v.(o)] I K'(p)& 0 (8)

which tells us that the corrections of order ~,
cancel on the right-hand side of Eq. (7). Lemma
1 informs us that the same is true of the left-
hand side. As the equality is true in the V-spin
limit and the order-A, corrections vanish, Eq. (7)
follows. Finally, to establish contact with mea-
surable quantities, we express the form factors
f' ~ ( t ) and f '~ ~( t ) in terms of the electromag-
netic form factors E ' of m', K', and K' using
Only isospin relations val. id to all. orders in ~A,
and, therefore, to all orders in ~, and ~3. When
we remember the structure of J„",this leads to
Eq. (I). The above derivation closely parallels
that of Ref. 1 except that it gives the details in
the proof of Lemma 2 and is directly based on
the on-sheQ perturbative formulas of Refs. 7
and 8 rather than on the off-shell formulation of
Ref. 1.

Although Eq. (I) is formally valid for arbitrary
values of t, it cannot be applied in the resonance
region. This, however, is easy to understand: A
symmetry relation such as [t —m~'] '= [t —en~. '] '
+ O(X) makes sense when t is spacelike or far
away from the resonance region but it is certain-
ly not meaningful when t - w~'. Perturbation ex-
pansions simply break down. Although the deri-
vation of Eq. (I) gives us no detailed information
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about the nature of the O(X, ) terms, it is entirely
possible that these symmetry relations are satis-
fied with good accuracy far from the resonance
region, say in the spacelike region or near t = 0.

Turning our attention to physical applications,
we see that Eq. (1) implies f,' ' '(0) = 1+0(&,'),
the familiar result of the nonrenormalization
theorem. "'" It is clear, however, that Eq. (1)
contains considerable more inf ormation. In par-
ticular, if we differentiate Eq. (1) with respect
to t and then set t = 0 we obtain the prediction

6~,"'-' iim„'=-.'t(~,.'&+ &~~, '&1

+ (~,2) + O (~,2), (9)

where ~, ~ " ~ is the slope parameter inK~
-v +e'+v decay and (x, ')—= 6[dEi'/di], —,(we
use Feynman's metric) is the mean square charge
radius of boson a. In obtaining Eq. (9) I have
set f, (0) =1, consistent with our approx-
imation, and have neglected the unitary singlet
contributions. " The left-hand side equals" 0.360
+0.022 fm'. With (x, +) =0.460+ 0.011 fm' (Ref.
2), the preliminary result (x~+') = 0.26+ 0.07
fm' (Ref. 4), (x~0') = —0.054+ 0.026 fm' (Ref. 5),
the right-hand side equals 0.306+ 0.044 fm',
which is moderately encouraging. The compari-
son worsens if one uses the value (x,') =0.31
+ 0.04 fm' quoted in Ref. 3. A more satisfactory
test of the sum rule of Eq. (9) would require an
improvement in the measurements of (~~+') and
(r~o') and a solution to the apparent conflict in
the measurements of (r„') reported in Refs. 2
and 3.

Quite obviously, there are a number of theorems
of the same class as Eq. (1) in the baryon octet
sector. In Ref. 1 we already pointed out two inter-
esting relations, the precise V-spin analog of
Eq. (1). There are, however, more. These re-
lations and their physical applications will be dis-
cussed in a separate communication.
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