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the term Tr4'[p, 4'] since this is not invariant un-
der the infinitesimal elements of the algebra for
the graded choice of 4 given above (this would
also exclude p from being a Higgs scalar among
the gauge components in the extended dimensions).

The mass values above could be modified by the
further addition of a scalar quintuplet coupled to
the fermions, if so desired, though radiative
corrections will also be relevant here; I will not
give details.

Finally I turn to the problem of anomalies.
This question has been analyzed by Elias,"who9
on the suggestion of Salam, analyzed the anomal-
ies assuming that the fermion 5 $10 belong to a
15 of SV(6). He found there to be an anomaly
arising from the generator T». For SU(51 l) this
anomaly changes sign as a result of the graded
tracelessness of the corresponding generator
T35 9 the anomaly still persists. It is not required
to gauge T35 and so I will not do so here; thus
my theory will be anomaly free. It is relevant
to point out that there will be an anomaly in
SU(211) since the equivalent generator to T»',
T,', has to be gauged to keep the U(l)~+n non-
trivial. This anomaly arises since the relevant
quantity Tr[[A.,', A, ']„X,'], o 0. .Thus if superal-

gebras are being used, but with the ordinary
trace in I agrangians, it is in any case necessary
to go to a larger group which is anomaly free,
such as SU(511). lt is clear that a Lagrangian
built on the graded trace would still be prefera-
ble; I plan to return to this elsewhere.

The author would like to thank A. Salam for help
in the execution of these ideas.
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An infinite class of nonplanar skeleton graphs is found to vanish in any non-Abelian
gauge theory. Thus, the dominance of planar graphs is enhanced, particularly in pro-
cesses where some momenta are very large.

Non-Abelian gauge theories have surprising
properties which enhance the interest of the topo-
logical expansion. The techniques used in the
present perturbative computations are known, yet
the interplay of the group properties with the high-
energy limit of the space-time factors seems
very interesting. I shall then list the main re-
sults and sketch the derivations.

Every Feynman graph in a non-Abelian gauge
theory is conveniently written as a product of a
group weight factor, 8'~, times a space-time fac-
tor, M~. Diagrammatic methods which efficient-
ly compute S~ were described by Cvitanovic. '
The first results (A) and (8) in this Letter easily
follow from that paper.

(A) In every non Abelian gauge the-ory there ex-

ists an infinite class of skeleton graphs uith van-
ishing group u eight factor. The lowest-order van-
ishing graph in Fig. 1 of order g'. ~'~ vanishes

FIG. 1. The lowest-order graph with vanishing group
weight.
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(ll) In the non A-belian SU(N) theory, »oithout
fermions, the group ueight factor of a graph is
a polynomial in N, i.e. , the topological expan
sion is a po»ver&series in 1/N~ rather than I/N.

Indeed to compute the group weight factor W~
one performs two steps'. (a) Be-express all three-
gluon vertices in terms of the defining representa-
tion

ic;;„=2 Tr(T, T, T.
»

—T»T, T;), .

C

FIG. 2. A general class of graphs with vanishing
group weight.

and (b) replace internal gluon lines with gluon
projection operators:

2(T, )»'(T;)„' = 5„'5»' —N b»'5~'. (2)

since it results from contracting an antisymmet-
ric tensor C„.,- with a tensor T, ,„symmetric in
the exchange i j. A more general vanishing
graph is in Fig. 2. Again one checks that the ten-
sor T„.~, is symmetric in i j, provided the two
ladders have the same number of rungs. ' Next if
one notices that in a pure gauge theory (no fermi-
ons and no Higgs particles) the group weight fac-
tor of every 2-point function is proportional to
5,~ and for a 3-point function to C;,.~, then each
graph in Fig. 1 or 2 may be understood as a skel-
eton graph, where every three-gluon vertex is
replaced by an arbitrary (planar or otherwise) 3-
point function and every gluon line may be re-
placed by arbitrary 2-point function. By use of
diagrammatic methods, one sees that (A) holds
properly in any non-Abelian theory with a com-
pact Lie group. All vanishing graphs are nonpla-
nar. ' They are many, yet negligible when com-
pared with nonvanishing ones, ~ but still they seem
to have intriguing consequences, described in
property (C).

2(T, ),'(T, ),' = b„'b,'. (3)

For 2-point and 3-point functions, where there is
just one basic tensor (&,» and f„„respectively),
the group weight TV~ of the generic Feynman
graph is

[s/2]
Wc=6„(Ng')' Q c~(N') ~ at order g",

P=0

[s/2]
W, =f.„g(Ng')' g c,(N')

P=0

at order g"",
where the leading coefficient g0 is different from
zero if and only if the graph is planar. '

For the 4-point function one has six basic ten-
sors, ' three of which (A, B,C) have one boundary'
and three (D, E,F) have two boundaries. At orderg'"' one finds

However, because of the trilinear nature of the
coupling' the singlet term -N '5»'5, ' of step (b)
is seen to cancel and it can be ignored. That is,
one may use, for the internal gluon lines, the
simpler replacement, proper for the U(N) theory,

[s/2] [s/2] [s/2]
Wo=g'(g'N)' A Q a~(N') +8 Q b~(N') ~+C g c~(N')

0

[ /2] [ /2] [ /2]
+—D Q dJ, (N) +E p eJ,(N) +F p fJ,(N)

0 0 0
(6)

Higher n-point functions have weights W~ ex-
pressed in the same form after one has taken
care of the N factors associated with the number
of boundaries of the basic tensors.

One may remark that the properties (A) and (B)
hold for every ¹ 2, every value of the coupling
constant g, and every dimensionality (complex
too) of the space-time dimensions. They also
hold for spontaneously broken theories, provided
the local gauge group still survives as a global

! symmetry.
(C) There are kinematical (asymptotic, leading-

logarithm) regions of the Lorentz invariants
»chere the large Nexpansions -is exact (graphs
saith nondominant sleight axe not leading -log-
arithm dominant).

The property (C) will be shown here by quoting
some results of a new study' of Reggeization in
non-Abelian gauge theory. The high-energy be-
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= 0

I'IG. 4. An example of the cancellation that occurs
in leading lns, in nonplanar graphs, related to the ex-
istence of the vanishing graphs.

2 )
terchanged) is

C =g'T, (- s)t" '[g'E~, (t) lns]"/n t.

FIG. 3. An example of the relation Tf +2 (+/2)" 7'Ad,

pertinent to the leading lns planar graphs.

havior (large s, fixed t) of the elastic scattering
amplitude has been computed in a pure-gauge
(without fermions or Higgs particles) SU(N) the-
ory. The main differences with previous investi-
gations" are (a) dimensional regularization is
used, instead of the Higgs bosons, (b) an im-
proved treatment of the large-energy limit of
Feynman integrals, by which the numerators of
relevant Feynman integrals are decomposed into
sums of terms, each of which may be associated
to a contracted scalar Feynman integral. The
asymptotic behavior of the latter is then comput-
ed by counting the number and length of the short-
est t paths. " The main results of previous stud-
ies" are reproduced: In the t channel with the
quantum numbers of the gluon (adjoint representa-
tion t channel) there is just one Regge pole, the
Reggeized gluon, with the trajectory"

while in the Pomeron channel the perturbative re-
sults are consistent with the Froissart-bound-
violating fixed cut previously found. ' Yet the im-
proved treatment of the space-time factor'"
shows a different mechanism leading to these re-
sults. The set of leading (i.e., leading lns) planar
graphs is divided into two sets, the strictly pla-
nar graphs' and the set of graphs obtained from
the first set after the exchange s —u. At orderg'"" the leading lns contribution of the first set
in the t channel of the adjoint representation is

C =g T,s(t)" '[g K (t) lns]"/n',

while the contribution of the second set (s u in-

Here the group weight tensors 7.', and 7.', have the
property T, -T, =(N/2)"T„d, where T„, is the
projection operator of the adjoint representation.
An example is given in Fig. 3, where use is
made of Jacobi identity and triangle contraction.
The relevant (leading lns) nonplanar graphs are
also divided into two sets such that the second
set may be obtained from the first set after s—u permutation. Each graph of the first set
gives the (leading lns) contribution

D=(T +N 'T +T )g (gN)~ 'sf(t)(lns)~, (10)

where T~ is the projection operator for the Pom-
eron channel, 7', is a tensor contributing to the
adjoint channel, and T4 is a tensor contributing
to other channels. Furthermore, T~, T„and T4
are symmetric under the interchange s —u. Then
after summing the contribution of the second set
of nonplanar graphs (see an example of the can-
cellation in Fig. 4, the last term vanishes as it
contains Fig. 1 as a subgraph), the contribution
of nonplanar graphs is of the order g'sf(t)(Ng'
x lns)~ ' in the Pomeron channel and next to the
leading lns in the adjoint representation t channel.
In other words, to prove Reggeization of the vec-
tor mesons, one does not need the nonplanar
graphs. Furthermore, because the nonleading N
terms in planar graphs cancel (Fig. 3) one would
obtain the correct results, in the leading lns ap-
proximation, by computing only the leading N
contribution of the group weight factors 8'z,
rather than their complete value.

I would like to thank G. Marchesini for involv-
ing me in this computation, E. %itten for explain-
ing the topological expansion, P. Butera and
M. Enriotti for many discussions, and R. Blank-
enbecler for the kind hospitality of the Stanford
Linear Accelerator Center theory group.

This work was supported by the U. S. Depart-
ment of Energy under Contract No. DE-AC03-
76SF00515.

828



VOLUME 43, NUMBER 12 PHYSICAL REVIEW LETTERS 17 SEPTEMBER 1979

' Permanent address: Istituto Nazionale Fisica Nu-

cleare, Via Celoria 16, 20133 Milano, Italy.
'P. Cvitanovic, Phys. Rev. D 14, 1536 (1976). Many

references to previous work on diagrammatic methods
are given.

2It was already found in Ref. 1 that the group weight
factor W~ vanishes for the graph in Fig. 1, which is
topologically the complete bipartite I(3 3 [ after adding
the external vertex —see ¹ Nakanishi, Graph Theory
and Peynman Pnteg~als (Gordon and Breach, New York,
1971), Sect. 4.J and the following one, at order ge,
which is topologically the Petersen graph, and is ob-
tained in Fig. 2 by deleting all the rungs of the two lad-
ders and one side of each ladder. Also some generali
zations were noticed, which were obtained by replacing
a gluon line with a fermion line or by including such
graphs as subgraphs in other larger graphs.

~Planarity of Feynman graphs is related to the defi-
nition of planarity in graph theory Se.e Nakanishi, Ref.
2.

4The class of vanishing skeletons is discussed in
P. Butera, G. Cicuta, and M. Enriotti, SLAC Report
No. SLAC-PUB-2376, 1979 (unpublished). At large
order n in pertubation theory, the number of vanishing
skeletons is shown to be roughly (n/2)! .

~Q. 't Hooft, Nucl. Phys. B72, 461 (1974); Q. Vene-
ziano, Phys. Lett. 52B, 220 (1974), and Nucl. Phys.
B74, 365 (1974); M. Ciafaloni, G. Marchesini, and
Q. Veneziano, Nucl. Phys. B98, 472, 493 (1975); re-
cent works that include many references to further
work are G. Chew and C. Rosenzweig, Phys. Rep. C41,
263 (1978), and E. Witten, Harvard University Report
No. HUTP 79/A007, 1979 (to be published). Property
(B) was also stated in G. P. Canning, Phys. Rev. D 12,
2505 (1975), where graphs without color external sources
are discussed. The consequences of Eq. (6) in channels
of definite quantum numbers are discussed in Ref. 4.

~It is well known that the four-gluon couplings may
always be replaced by a sum of three-gluon couplings.

~A11 sums in Eqs. (4)-(6) extend up to Is/21, which
denotes the integral part of s/2.

I am here using the notation of P. Yeung, Phys. Rev.
D 13, 2306 (1976).

G. M. Cicuta and G. Marchesini, to be published.
' The list of previous investigations is long and this is

a subset: M. Qrisaru, H. Schnitzer, and H. Tsao, Phys.
Rev. D 8, 4498 (1973); H. T. Nieh and Y. P. Yao, Phys.
Rev. D 13, 1082 (1976); L. ¹ Lipatov, Yad. Fiz. 23,
642 (1976) [.Mv. J. Nucl. Phys. 23, 338 (1976)]; E. A.
Kuraev, L. N. Lipatov, and V. S. Fadin, Zh. Eksp. Teor.
Fiz. 72, 337 (1977) t Sov. Phys. JETP 45, 199 (1975)J;
B. M. McCoy and T. T. Wu, Phys. Rev. D 13, 1076
(1976); L. Tyburski, Phys. Rev. D 13, 1107 (1976);
C. Y. Lo and H. Cheng, Phys. Rev. D 15, 2959 (1977);
H. Cheng et al. , Phys. Lett. 76B, 129 (1978); C. Y. Lo,
to be published (I thank him for making his unpublished
work available to me); J. Bartels, Phys. Lett. 68B,
258 (1977); J. B. Bronzan and R. L. Sugar, Phys. Rev.
D 16, 466 (1977).

"See for instance, R. J. Eden et al ., The Analytic S-
Mat~x, (Cambridge Univ. Press, Cambridge, England,
1966), Chap. 3.

To compare the present results with the previous
ones, one should imagine the computation with double
infrared regularization, that is, the SU(A) model with
Higgs particles (Ref. 10) in d-dimensional space-time
To work with dimensionless coupling constant, in d-
dimensional space-time, one usually replaces g
-g(m )

" . However, in the Regge trajectory there is
an effective coupling p = g2N/2 which may be replaced
by a dimensionless coupling constant y-y(m )

" . On, e
would then obtain the Reggeized gluon with the trajecto-
ry

~(t) = 1+ (m')' " '(t-V')& (t)

where &q 2(t) is the usual bubble graph in an Euclidean
(d - 2) -dimensional space-time,

dn

J~ [o (1 a)t+p213 ~i2'

This trajectory smoothly approaches Eq. (7) by remov-
ing the H~gs particles or it goes smoothly into the usu-
al &(t) = 1+g2(N/2) (t -.p )K2(t) +. . . by removing the
dimensional regularization, that is, by replacing d = 4.
Either way, one has a singular limit if one removes the
second regularization. Still my way may have some
advantage because by letting d approach 4 from above
in Eq. (7), the slope of the trajectory becomes infinite
while the intercept is always 1, while in letting p-0
in the customary Y~~g-Mills-Higgs system, the slope
becomes infinite while the intercept is 1 only in the
limit. I thank A. White for a discussion on this and for
mentioning this possible advantage for a supercritical
Pomeron. See, A. White, CERN Reports No. TH 2592,
1978 (unpublished) and No. TH 2629 1979 (unpublished).
Equation (7) may be written more explicitly as

&/2-2 ~r
n(t) = ].+y —

2

1 (d/2 —1)
(3 —d/2) [ sin(&d/2) ) I'(d —5/2)

The unusual behavior of the tra]ectory for d& 4 is per-
haps related to the inadequacy of the lowest-order ex-
pansion of the trajectory in a situation in which the in-
frared divergence becomes more severe. I thank
R. L. Sugar for comments about it and encouragement.

'~It has long been known that the infinite-momentum
techniques usually employed in Ref. 10 do not correctly
evaluate the asymptotic behavior of each Feynman graph,
but may produce the correct result for well-chosen
sets of graphs.
'4Here strictly planar graphs indicate the planar Feyn-

man graphs that have the double spectral function
p(s, t).
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