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This paper presents a superunified model in six dimensions using the superalgebra
SU(5l1) with the vector and Higgs mesons being the various components of the gauge
fields. These are fixed by the principle of infinitesimal gauge invariance to give the
standard symmetry-breaking mechanism. Superheavy vector-meson masses are obtained
by an additional scalar matter 24-piet. Fermions are placed in the 10+5 representation,
and their masses examined; the theory is shown to be anomaly free.

Various attempts have been made recently to
gauge the superalgebra SU(2I 1) in various extra
dimensions, ' ' so as to obtain naturally the Wein-
berg angle 6I~ =30'. It is natural to extend these
discussions to include quarks in a superunified
model; I propose to do that here. Salam has sug-
gested' that the proper extension of SU(2I 1) is
to SU(511), with the fermions in the 15= 10&5
representation of SU(6). I have worked out here
the consequences of this suggestion. It is indeed
natural to choose initially the superunified group
SU(5)' as the simplest possible. In so doing we
have automatically the value sin'8& = 3/8, but
standard renormalization effects from superbo-
sons will bring this value down closer to 0.2 by
the usual arguments.

Arguments have been given elsewhere against
the use of the "natural" invariant for a superal-
gebra, the graded trace, because of its negative-
energy features for SU(nlm) and the loss of the
kinetic energy terms for the Higgs sector (the
gauge potential in the higher dimensions). The
only suitable expression with which to commence
appears to be'

L, = —(1/2g') TrF„„F"",
where

I"az =saAN BnrAa+'[A-a An]

Under the graded gauge transformation

5„A„=i [A„,u] +B„u,

6„(AB)= (5„A)B+(-1) "A 5„B

(where au = 1 only if A and u are odd), then'

5u+NN t [+AN t u] ~

5„L= (1/g ') Tr(u, [Z„„„Z"",],) (2)

+u" =0 (3)

for 1 & p, , v ~4, m 05 (m denoting the extra
components of space-time), where JIf„are con-
stants, and A6 =diag(1, 1,1,1,1,5). The nonin-
variance of I- under odd gauge transformations
is now clear, since the form of these potentials
is not then preserved. We thus have to consider
the condition 6„I= 0 as a prescription for fixing
the Higgs sector; since it leads to numerous ex-
perimental predictions' it can undoubtedly be
checked over the next few years.

We evaluate the Lagrangian (1) in two extra
timelike dimensions, ' using the values of the
fields and potentials specified by (3) and

From (2) it is clear that 5„L will be nonzero in
general. I impose the requirement of "inifinitesi-
mal" gauge invariance by requiring that the A„
be chosen so that 6„1-= 0; thus we need F»,F"",
= 0. This can be solved~ by taking

is the gauge field strength constructed from the
potential A„and the bracket is that arising in the
superalgebra. Following arguments given in
Ref. 4 we take for a generic potential A = (,;~", ),
where a is aHermitian 5&5 matrix, Trc= Tra,
and b is a complex quintuplet. For

A„=~ Q A„'A.,+ ~B„X...
&0'6

51 g2 iP $ 0 s 61 g2 q
1' (4)

then

[A, B]= [A „B,] + [A„B,]
+ [A„Bo]+i[A„B,]~.

The Lagrangian (1) then becomes

L = —-' Tr[En„(24)]a —6 (B„B, SB„)6—
+6ID„q 61'+6ID„@61'- &, (5)
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where

V=@'441(V'V )I'+4I (0'4)l'+2(V"V )(0'0)

+6(y ()(g q) —4M'(cp y)), (6)

y, =@+(, y, =( —y, and F»(24) is the SU(5)
gauge-invariant field strength arising from the
24-piet Q„"& . The minimum of V in (6) occurs
for g = 0, (p p) =

&
M'. Then g and the fifth com-

ponent of Rep are massive with mass 2M@ = 2M~, -

where W are the usual SU(2)SU(1) massive W

mesons; this predicted mass is the same as for
the original case of SU(2 I 1).' lt is interesting to
note that the same ratio of the Higgs mass to
the W-meson mass occurs in any SU(n I m) theory
in six dimensions. Three further components of
p are absorbed by the W's so leaving six real
massless 8' fields.

To give mass to these latter fields and also to
bring in the superheavy-mass scale I introduce
a further scalar 25-piet as a matter field, 4
=Qy'X'+p&, i ~ It would have been possible to
have introduced this multiplet as a higher-dimen-
sional gauge-field component, but since it is
even it would have been necessary to use at least
two such components, say A7 and A„with A70

4 A 7
= 0, A 80

= @'8~ A 8, = 0. The resulting po-
tential term in L of (1) would then have been
Tr([C „4,])'. The stationary value of such a
term is at 47=48, with value zero, so that no

further spontaneous symmetry breaking (SSB)
can occur in this manner. Thus I introduce an
additional term —, Tr(D„4)' —V(C) in L, with V(C)
being of form

V(C) =--'V'T. (C') P.(C),

where P~(C) is a positive fourth-order polynomial
in 4 and p, is a mass of order 10' GeV. It may
not be necessary to introduce P, explicitly, since
it may arise by a radiative-correction mechan-
ism'; in either case we expect an SSB value of
(C')0- p. We have to note in addition the further
scalar self-interaction term from —, Tr[(D, C)'
+ (D,C)'] of value

.[v.'+-v, +v.'+v.] (8)

f (5x5) 5/
(- 5/72 0

with the standard assignments

in V. The total expression (6), (7), and (8) has a,

minimum with ( and p parallel. Following Buras
et al'. ' there will be expected to be a minimum of
the combined potential with (=0, the masses of
the 24 and 5 all being large except for the familiar
SU(2)8 U(1) Higgs particle. Thus the model will
be satisfactory in the meson sector as is SU(5)."

I et us now turn to the fermion sector. This is
described by a (5 x 5), and a 5 placed together to
make the SU(5I 1) spinor-valued matrix

5= d3
e+

—Q C
2

Q

—Q3

—Q —Cf1 1

g~ G~

-g3 —Cf3

0 -e'
e 0

where I neglect the Cabibbo rotation. I also set to zero the extra left-handed antineutrino which really
should have been included in the 4' of (9) as v'A, to give the complete 16 of SU(511), but decouples from
the theory due to its chirality and singlet character under SU(5). The fermion kinetic term in the La-
grangian will thus be i Tr(+/f4), where D„ is the usual covariant derivative, g =D„I'» the I'„being
the Dirac matrices in the higher dimensions, and 4 =0 ~I', =4'~yo. It is possible to show the invariance
of this term under infinitesimal graded gauge transformations by methods similar to that of the third
paper in Ref. 3 only provided the grading in 0 again follows chirality as it did in the case of the 3 for
leptons in SU(2 l1). Thus

5„Tr(4'P4') = Tr(2i@/@u, —2i[4'„u,] g@-4', [4'„jfu,]+j

where 4'„4» are the even and odd parts of 4,
respectively. Only provided 4, and 4, have op-
posite chiralities does the right-hand side vanish,
as can be seen by inspection. The fermion mass
term is therefore

Tr(e(r, [(X,)„e]+I;[(~,)„e])j,

!
which leads to the mass values m, =m„m„=0,
as for the original SU(5) model. ' Extension of
the theory to higher dimensions, following the
first paper of Ref. 3, would lead to m, =m„, m,
=0, m, =m, , m„=0. It is not possible to include
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the term Tr4'[p, 4'] since this is not invariant un-
der the infinitesimal elements of the algebra for
the graded choice of 4 given above (this would
also exclude p from being a Higgs scalar among
the gauge components in the extended dimensions).

The mass values above could be modified by the
further addition of a scalar quintuplet coupled to
the fermions, if so desired, though radiative
corrections will also be relevant here; I will not
give details.

Finally I turn to the problem of anomalies.
This question has been analyzed by Elias,"who9
on the suggestion of Salam, analyzed the anomal-
ies assuming that the fermion 5 $10 belong to a
15 of SV(6). He found there to be an anomaly
arising from the generator T». For SU(51 l) this
anomaly changes sign as a result of the graded
tracelessness of the corresponding generator
T35 9 the anomaly still persists. It is not required
to gauge T35 and so I will not do so here; thus
my theory will be anomaly free. It is relevant
to point out that there will be an anomaly in
SU(211) since the equivalent generator to T»',
T,', has to be gauged to keep the U(l)~+n non-
trivial. This anomaly arises since the relevant
quantity Tr[[A.,', A, ']„X,'], o 0. .Thus if superal-

gebras are being used, but with the ordinary
trace in I agrangians, it is in any case necessary
to go to a larger group which is anomaly free,
such as SU(511). lt is clear that a Lagrangian
built on the graded trace would still be prefera-
ble; I plan to return to this elsewhere.

The author would like to thank A. Salam for help
in the execution of these ideas.
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An infinite class of nonplanar skeleton graphs is found to vanish in any non-Abelian
gauge theory. Thus, the dominance of planar graphs is enhanced, particularly in pro-
cesses where some momenta are very large.

Non-Abelian gauge theories have surprising
properties which enhance the interest of the topo-
logical expansion. The techniques used in the
present perturbative computations are known, yet
the interplay of the group properties with the high-
energy limit of the space-time factors seems
very interesting. I shall then list the main re-
sults and sketch the derivations.

Every Feynman graph in a non-Abelian gauge
theory is conveniently written as a product of a
group weight factor, 8'~, times a space-time fac-
tor, M~. Diagrammatic methods which efficient-
ly compute S~ were described by Cvitanovic. '
The first results (A) and (8) in this Letter easily
follow from that paper.

(A) In every non Abelian gauge the-ory there ex-

ists an infinite class of skeleton graphs uith van-
ishing group u eight factor. The lowest-order van-
ishing graph in Fig. 1 of order g'. ~'~ vanishes

FIG. 1. The lowest-order graph with vanishing group
weight.
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