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We generalize the analysis of couplirg-constant renormalization in unified theories to
allow for more than one scale of spontaneous symmetry breakdown between unification
end SU(S) 8 SU(2) 8U(1). We find a relation between a, o', , sin28w, and the proton lifetime
which is independent of the details of the gauge hierarchy and holds in a large class of
unified theories.

In an SU(5) unified theory of strong, weak, and
electromagnetic interactions' the structure of the
gauge hierarchy is unique. If this theory is to
describe physics, the SU(5) symmetry must be
broken at a very large momentum, -10"GeV,
down to SU(3)CRSU(2)U(l). s This symmetry is
further broken down to SU(3) U(1) at M~-80 GeV.
There is no choice for the first symmetry break-
down because the only proper subgroup of SU(5)
which contains SU(3)SSU(2)SU(1) is SU(3)SU(2)
U(1) itself. Consequently, the effect of the gauge
hierarchy on the renormalization of sin'0~ is
unique, and any reasonable choice for the color
SU(3) coupling e, implies sin'() w = 0.2 ~ Experi-
mentally, sin'8~ =0.23+ 0.01.' This is closer to
0.2 than it is to & (the naive unification value)
which is nice, but it seems to be significantly dif-
ferent from the SU(5) prediction. What is going
on~ One possibility is that the unifying group may
be some larger group which contains SU(5). Then,
the gauge symmetry may break down to SU(3)
ISSU(2)U(1) in several steps. In this paper, we
generalize the analysis of Ref. 2 to this more
general situation. We find a useful formula with
a simple physical interpretation. We then apply
it in some interesting examples.

If a simple gauge group G is broken down to
SU(3)CSSU(2)U(1) inN steps, the gauge hierarchy
of the theory can be characterized byN +1 mass-
es, p„, x =0 to N, describing the strengths of the
various steps of symmetry breaking. We assume
that p, ,«p „. There is a large region between
p„, and p, „where the physics can be described

by an effective field theory with an S" gauge sym-
metry. S" is the subgroup of 6 which is left un-
broken in steps x through% of the hierarchy. ' $"
is broken down to S' ' at a mass p,„,. The gauge
bosons associated with S" but not with S" ' get
mass of the order of p„,.

The subgroup S" is a product of simple factors
and U(1) factors

where s " is either a simple non-Abelian sub-
group or a U(1). S', for example, is U(1)ISSU(2)
CSSU(3); so we can take s,'= U(1), s, '= SU(2), and

s, '=SU(3). So is SU(3)U(1) and p, o-M|r. Denote
the generators of s„"by T„; . The unification pro-
vides a natural normalization of the generators.
Choose a convenient representation of G (for ex-
ample, the adjoint representation) so that

tr(T„i Ts;") =X5as6i (2)
where X is any convenient constant.

We will choose X so that the electric charge Q
is

Q
—T 1+(5)1/2T 1 (3)

in terms of the generators of S' [T»' is the third
component of weak SU(2) and T»' is the U(1) gen-
erator]. The factor (-,')'~s in Eq. (3) is character-
istic of groups G with the SU(3)SU(2)SU(1) em-
bedded in an SU(5) subgroup [in Ref. 2, (-,')"'
= —C].

If S" contains more than one U(1) factor, we
choose all but (at most) one to be orthogonal to
the electric charge [tr(QT„,") =0]. The orthogon-
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' -6 ae 5i; Pn y

where

P„," "=P,
l C„,„'"I'.

(5)

(6)

P 8"' is the probability that the s„"subgroup of
S" exists in the ss' subgroup of S'. The I"s sat-
isfy

al U(1) generators do not get involved in the phys-
ics of S1, so we will ignore them and assume that
S" contains at most one U(1) subgroup.

Because of the nested gauge subgroup structure,
we can express the generators of S" as linear
combinations of some subset of the generators of
8' for y&x, as

(4)

The gauge invariance [plus the restriction to a
single U(1) subgroup for each x] implies

gr x ~p c x, x+1 gr x+1/+ x+1 (12)

The normalization condition for the S' fields plus
Eq. (6) yields Eq. (11)~

We now prove Eq. (9) by induction. For x =N,
Eq. (9) is correct. In fact, it is just the result of
Ref. 2 for a single-step hierarchy. Suppose it is
true for x = z+ 1. Standard renormalization-group
techniques give

~ '(~.-i)' i '(~.)', +2b 'ln

of the 58"s weighted with these probabilities.
To prove Eq. (9), we first show that the coup-

lings g„"(y,„) and gs" "(p„)are related as follows:

1 x, x +1

e
" gs" "(~.)' '

The W,.' associated with s' couple to g 'T
Consistency with Eq. (4) requires

a8 n8&

+8P s"=»
(Va)

(Vb)

Equation (11) can be used on the first term on the
right-hand side yielding

P~s~™=gyP~y ' Pys"', x~z(y. (Vc)

Equation (Va) follows from C;s& "*= 5 ~5,. and

Eq. (6). Equation V(b) foQows from Eqs. (2), (4),
and (6). Equation (Vc) follows from Eq. (5) and
the multiplication law for the C's,

1 ~, 1z, z +1

g 8(~ )2 ~ RS g I+/( )2

By assumption, this is

(14)

yACni yy
' C yygz

' —C (6)

„+ g ln "' Q, P ~"'2bs'.
gS J"PI y =x I"y -1

(9)

g is the gauge coupling constant of the unifying
group G. 56' is the constant which appears in the
P function for g ',

&."(g.")= b."g.*'+o(g "'). (10)

Equation (9) is the obvious generalization of the
result of Ref. 2 to the generalized gauge hierar-
chy. The result can be stated as follows: In the
yth region, the subgroup s " exists in s &' with
probability & 8"', so the renormalization of its
coupling constant g " is governed by the average

%e now state and prove our main result. If
g„*(E)are the gauge coupling constants for the
s„" subgroups renormalized at Z (p,„,(E (p„),
then to second order in g and in the approxima-
tion of Ref. 2, p,„1«p„for all x and sharp transi-
tions between different regions, they satisfy

5~ ln ' Q P '"'' 2by'. (15)
y =z +1 +y-1 y

Using Eq. (V), we can write Eq. (15) as

„+ Q ln QP g"'2bs'.
g( I h'j y =z +1 ~y-1 8

(i6)

Combining Eq. (16) with the second term on the
right-hand side of Eq. (13) establishes Eq. (9)
for x =z and completes the proof.

As a demonstration of the power of Eq. (9), we
will consider an especially simple but interesting
class of generalizations of SU(5). Suppose that G

is SU(L) with SU(5) embedded in such a way that
the L-dimensional representation consists of an
SU(5) 5 and L-5 neutral singlets. We will show
that with reasonable assumptions we can derive
a relation between z, e„sin'0~, and the proton
lifetime which is independent of the form of the
gauge hierarchy.

Define p,„=M to be the mass characterizing the
strongest symmetry-breaking step which sepa-
rates the SU(3) and SU(2) subgroups of the SU(5)
subgroup of SU(L) into different s ~. There may
be yet stronger breakdow'ns, but they are irrele-
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vant because the SU(5) is still unified. The vec-
tor bosons which mediate quark-number-noncon-
serving interactions have mass of order M. M
is the analog of the unifying mass in SU(5) ~

The subgroup S" for x ~g must consist of an
SU(m, ) which contains the weak SU(2), an SU(n„)
which contains color SU(3) and a U(1)"which con-
tains the rest of the charge. There may be other
subgroups but they are completely neutral and
irrelevant to 0., n„and sin28&, and so we will
ignore them. Thus we can take

s,"= U(1)",

s," = SU(m„) D SU(2),

s,"= SU(n„) ~ SU(3) .
(17)

I „'"=a-(m„-2)/m„,
' ~ "=—', (n„- 3)/n„,

P„'"= + (m „+n„)/m„n„.

We can now calculate g„'(po), u= 1 to 3:

1

g.'(~.)'

(18)

The form of the T," generators which contrib-
ute to low-energy physics is now fixed by the na-
ture of the SU(5) embedding and the normaliza-
tion condition, Eqs. (2) and (3). We can compute
the P's. We find

lyx P lyx
22 33

But

g, '( p,)'/« = u, (l,),
g, '( po)'/4~ = u( po)/sin'e~,

g, '( p, )/. 4~ =~ u( p, )/, cos'8~,

(22)

and p,,=M~, and so we get the following relation
J

cos26)& 2 1 22 M

u(M, ) 3 u, (M,) S~
(23)

For sin'8~=0. 23 and u, (M„) =0.15, u(M~) =1/
128.' This gives M = 10"GeV, corresponding to
a proton lifetime -10' yr.

It is important to note that the above analysis
applies even if some of the stages of symmetry
breaking are dynamical. Equation (23) will be
satisfied in SU(N) "technicolor" theories' if the
embedding of SU(5) is such that the N is a 5 plus
~ —5 singlets. If the embedding of SU(5) in G is
more complicated, one can use Eq. (9) to obtain
bounds on the coupling constants and the unifying
mass. However, it is more informative for small
groups like O(10) and E(6) to analyze each of the
possible gauge hierarchies separately. ' The
example of O(10) is discussed in detail in Ref. 7.
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where
48& b, =2E,

48~252' = -11m„+2E,',
48@253'= —11n„+2E3' .

(20)

1 3 1 2 1
gl'(I 0)' 5 g2'(I 0)' 5 g, '(P.)' ' (21)

The constants E, ' depend on the number of spin-
—,
' and scalar particles with mass less than p, .
To obtain a simple result, we must assume that
E ' is independent of u. This will be the case if
within each representation of the SU(5) subgroup
all particles have masses of the same order of
magnitude.

Assuming E,'=E2'=E3', we can find a combina-
tion of coupling constants for which all y depen-
dence disappears from Qsp~bs in Eq. (19). It is
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