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We have used the Monte Carlo renormalization-group method to study the three-state
Potts model in three and four dimensions. In both cases, we find a first-order transi-
tion without an associated discontinuity fixed point. The transition in three dimensions
is "almost second order" in the sense that some evidence was found for the existence of
second-order fixed points associated with singularities in the metastable region just
beyond the first-order transition.

The three-dimensional, three-state, ferromag-
netic Potts model' is described by

where 0; =1, 2, or 3, the sum is over the near-
est-neighbor pairs, and K» includes a factor of
—I/h~T. It is expected to describe the critical
properties of a number of physical systems such
as ferromagnets with cubic anisotropy in a mag-
netic field. 2 Although Landau theory predicts a
first-order phase transition (which is certa, inly
correct for sufficiently high dimensionality), the
transition is known to be second order in two di-
mensions. ' Several attempts have been made to
determine the nature of the transition in three
dimensions, but it proved to be difficult to find,
theoretically or experimentally, an unambigous
answer to the problem, "although the experi-

mental results point to a first-order transition.
We have studied the three-state Potts model in

both three and four dimensions using the Monte
Carlo renormalization-group (MCRG) method 2' "
We have been able to determine that the transi-
tion is first order in both cases. In addition, the
rather novel position-space renormalization-
group flows obtained from the MCHG analysis
have clarified the nature of these first-order
transitions (including the existence of metastable
branches) and explained the difficulties encoun-
tered by other methods. We believe that these
results should have broad application to the gen-
eral theory of first-order transitions.

The usual description of first-order transitions
in the context of position-space renormalization-
group theory (which includes the MCRG) was first
given by Nienhuis and Nauenberg. " They showed
that a sufficient condition for a first-order transi-

1979 The American Physical Society



COLUM E 4$ y NUMBER 11 PHYSICAL REVIEW LETTERS 10 SEPTEMBER 1979

tion is the existence of a "discontinuity fixed
point, " characterized by an eigenvalue of the lin-
earized RG transformation equal to b, where b

is the scale factor and d is the dimensionality.
The existence of such a fixed point in an BG anal-
ysis is necessary to describe the divergence of
the susceptibility along the coexistence line in
the d =3 Heisenberg model. "" A discontinuity
fixed point describing the low-temperature phase
of the d = 2 Ising model has also been found by the
MCBG method ' as predicted by Klein, Wallace,
and Zia,"who linked it to the presence of essen-
tial singularities in the free energy as a function
of the magnetic field.

In contrast to this traditional picture, we find

that there is no discontinuity fixed point associat-
ed with the first-order transition in either three
or four dimensions. Instead, the MCRG analysis
for the ordered phase in both the stable and me-
tastable regions resulted i:n flows toward the
strong-coupling fixed point, while the correspond-
ing MCRG Qows for the disordered phase ap-
proached the weak-coupling fixed point. This im-
plies that the first-order transition corresponds
to a simple crossing of two branches of the free
energy '.he thermodynamic properties can be
analytically continued through the first-order
transition into the metastable phases without en-
countering any singularities associated with the
transition.

We also find evidence that the transition in the
three-dimensional Potts model is "almost second
order" in the sense that there are second-order
fixed points which could, in principle, be reached
from the metastable regions. Experiments on
such a system would show thermodynamic proper-
ties (in the stable phases) that are describable by
power-law singularities with the apparent loca-
tion of the singularity in the metastable region
just beyond the first-order transition.

A schematic diagram of the MCRG flows for the
disordered phase is presented in Fig. 1. The ver-
tical axis shows the nearest-neighbor coupling
and the horizontal axis represents all other pos-
sible interactions. The solid lines are flows
from the stable phase that eventually go to the
weak-coupling fixed point. The flow from K, (the
first-order transition temperature) is not quali-
tatively different from flows immediately above
or belov it is only distinguished by having~ a
free energy equal to that of the ordered phase at
the same temperature.

Table I contains MCRG data for the renormal-

K2„
K '-

1

K„„

ized, nearest-neighbor correlation functions of
the simple-cubic (d =3) Potts model at its transi-
tion temperature (K', =0.550) for both the ordered
and disordered phases. The numbers reQect the
shrinking lattice size as well as the renormalized
coupling constants, but the trends toward strong-
or weak-coupling fixed points are still clear.

Table II contains MCBG values for the even-
and odd-eigenvalue exponents of the linearized
BG transformation"" for the same MC simula-
tions used in Table I. The renormalized Hamil-
tonians are clearly moving in different directions

TABLE I. Nearest-neighbor correlation functions for
the renormalized configurations of the three-dimension-
al, three-state Potts model at its first-order transition
temperature. Data for both ordered and disordered
states were taken from MC simulations at a coupling
E&=0.550 (with ordered and random starting configura-
tions, 200 MC steps per site to reach equilibrium, and
averages over 2000 MC steps per site, for a 32x 32x 32
lattice with periodic boundary conditions). RG iteration
0 refers to averages over the unrenormalized configura-
tions.

RG
iteration

Ordered
state

~nn
Disordered

state

0.580
0.629
0.753
0.922

0.529
0.503
0.482
0.453

other K s

FIG. 1. Schematic RG flow diagram for the disordered
branch of the three-dimensional, three-state, nearest-
neighbor, Potts model. K~ is the nearest-neighbor
coupling at the first-order transition. The solid lines
represent flows from the stable phase and dashed lines
from the metastable phase. E2 is the apparent second-
order transition point in the rnetastable region.
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TABLE II. Even and odd MCRG eigenvalue exponents obtained from the same
MC simulations of the ordered and disordered states of the three-state, three-
dimensional Potts model described in Table I. The scale factor for the RG
transformation is b =2, and block spins are assigned by majority rule, using
predetermined sites as "tie breakers" when necessary. Missing entries corre-
spond to complex eigenvalues.

RG
iteration

Number
of

interactions
~ e

Ordered Disordered
y

0

Ordered Disordered

1.65
1.75
1.75
2.05
2.06
2.05
2.45
2.31
2.40

1.53
1.62
1.62
1.61
1.70
1.72
1.52
1.66
1.67

2.51
2.41
2.33
2.73
2.32
~ ~ ~

3.12
~ 4 ~

3.27

2.41
2.42
2.42
2.32
2.33
2.34
2.21
2.23
2.23

toward different fixed points. On the other hand,
the changes in the eigenvalue exponents are fair-
ly slow, which is consistent with being close to
fixed points in the metastable region. The data
are not nearly good enough to give estimates of
the eigenvalue exponents for the metastable fixed
points, but it may be worth noting the proximity
of both to the Ising critical values (y|'= 1.6, y,

'
5) 32

The first-order nature of the transitions can,
of course, also be seen by standard MC methods.
Figure 2 shows hysteresis data for the three-
dimensional, nearest-neighbor correlation func-
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FIG. 2. Hysteresis data for the nearest-neighbor cor-
relation function of a simple-cubic Potts model. Cir-
cles represent averages over 100 MC steps per site on
24x 24&& 24 and 32x32&& 32 lattices.

tion C„„plotted against the coupling strength K„„
for lattices with linear dimensions A =24 and N
=32 and periodic boundary conditions. The cir-
cles show averages over intervals of 100 Monte
Carlo steps per site and the arrows on the dashed
lines indicate the development of the system for
successive intervals. The solid lines show the
stable branches and are only drawn to quide the

33

Since one would expect the apparent second-
order transitions to be limits of stability of the
metastable phases, it is interesting to note that
the strong-coupling series of Miyashita, Betts,
and Elliott" suggested a singularity near K
=0.5475, while Straley's" weak-coupling series
suggested a singularity near X =0.5535. Both
numbers are in reasonable agreement with the
hysteresis shown in Fig. 2.

The first-order transition in the four-dimen-
sional hypercubic Potts model occurs at Ky
=0.3875+ 0.0010 and is qualitatively similar to
the three-dimensional case. Further details of
the calculations for both cases will be presented
elsewhere.
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