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%e present an analytical expression for the dynamical spin-correlation function of the
S=2 linear Heisenberg antiferromagnet based on the fact that the spectrum is dominated
by a double continuum of spin-wave excitations. Our expression is not exact, but exact
sum rules show that the degree of approximation is small. We predict that in a uniform
magnetic field the spectral weight function will display a double-peaked structure. Such
a feature is observed in recent neutron-scattering experiments.

Spin dynamics is a subject of considerable cur-
rent interest and activity, whose development is
hampered considerably by lack of exact results,
particularly for Heisenberg systems. Even in
one dimension (1D), calculations have relied
heavily on the classical (spin 8 = ~) Heisenberg
chain, despite abundant evidence that quantum ef-
fects are extremely important at low tempera-
tures (T-O), The problem is that for the quan-
tum, S= —,', Heisenberg chain, exact results are
limited, even for the simpler problem of the stat-
ic thermodynamic quantities. ' Fortunately, ex-
tensive numerical calculations' have provided con-
siderable information and understanding. Knowl-
edge of the antiferromagnetic (AFM) spectral ex-
citations is limited to the des Cloizeaux-Pearson
(dCP) dispersion-curve calculations' recently ex-
tended by Ishimura and Shiba to the case of non-
zero applied magnetic field H. Exact results for
the spin correlations, and hence the spin dynam-
ics, are totally lacking. Exact (or reliable nu-
merical) calculations would therefore be most
timely, and valuable in several ways. Because

of the great void indicated above, ' such results
would (a) substantially advance our understanding
of the AFM Heisenberg linear chain, (b) provide
qualitative and quantitative estimates of impor-
tant quantum effects, for example, asymmetrical
line shapes observed in neutron scattering exper-
iments on the linear AFM, CuCl, 2N(C, D,) (di-
chloro his-pyridine copper D, abbreviated as
CPC),"and (c) offer testing possibilities for 3D
approximate theories. Furthermore, calcula-
tions in nonzero II are needed (d) for spin Peierls
systems in a field, and (e) to explain features of
more recent neutron-scattering experiments on
CPC for II &0, particularly the appearance of a
double peak in the spectral weight distribution at
70 kOe. '

Here we synthesize information obtained from
(a) exact calculations on finite chains of two
through ten spins; (b) from selection rules which
show exactly which classes of states have non-
zero matrix elements with the ground state (and
hence contribute to the spin dynamics) for both
II =0 andII &0; (c) from sum rules; and (d) from
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both exact and approximate dispersion curves.
We feature an analytic expression for the dynam-
ical correlation function in (q, +) space derived
using the above information. Although not rigor-
ous, the expression yields good agreement with
the few known exact results for the S = 2 chain,
and, most important, allows for the first quan-
titative interpretation of the results of neutron-
scattering experiments.

It was pointed out recently' "that the dCP ex-
citations were not the dominant feature of the H
=0 spectrum, but merely formed the lower bound-
ary of a triplet (total spin S= I) continuum. This
spin-wave continuum is actually a double (i.e. ,
two-parameter) continuum in (q, v) space, and is
hereafter denoted SWDC. Exact calculations show
that there is an upper boundary to the SWDG giv-
en by E,(q) =~J~ sin(2q) I,""whereas the dCP ex-
pression is E,(q) = (2mJ)~ sinq~, if we consider the
isotropic, S= —, chain with Hamiltonian H =~,.B,
~ 5, +, It s.hould be noted that the Anderson spin-
wave result is actually the dispersion curve for
the classical (S=~) chain, E "(q) =J~sinq~. The
pattern of low-lying states of the AFM chain is
quite complicated (see Fig. I of Ref. 8), involv-
ing singlet (S= 0) and quintet (S = 2) as well as

triplet states. Fortunately, we can prove selec-
tion rules which show that the only states having
nonzero matrix elements with the (singlet) ground
state are triplets.

Figure 1 shows the spectral weights for the
triplet states for a ten-spin ring. %e may note
the following: (a) Almost all the spectral weight
is concentrated within the boundaries of the SWDC;
(b) the matrix elements increase in magnitude as
the energy decreases to the lower (dCP) boundary,
E,(q); and (c) there is some very small but finite
weight well above E,(q). Exact sum-rule results
of Hohenberg and Brinkman' and finite-chain cal-
culations" indicate that this weight should persist
in the thermodynamic limit.

The dynamical spin-correlation function in (q,
u!) space, G„(q, v) is the Fourier transform of

(S,'(t)S, .'(0)), and is proportional to the inelastic-
neutron-scattering cross section. We denote the
dominant part of G„(q,~), which comes from the
SWDC, as G„' (q, o!). We postulate the follow-
ing analytical form for G„(q,&u), and later
test it in the light of exact sum rules and experi-
mental results:
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where 0 is the step function.
This function diverges at the lower threshold

energy, E,(q), and has a smoothly decreasing
tail up to E,(q), the upper, cutoff energy. This
form is in agreement with a semiclassical calcu-
lation of Mikeska" for q-p and T = 0, and with
correlation functions derived from a continuum
lattice (Luttinger) model of Luther and Peschel"
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Flo. 1. Q (q, ) for a cyclic chain of %=10 spins,
For each q, G (q, ) is a sum of p functions. The
open triangles denote energy and wave number of the
triplet excitations, and the numbers represent the cor-.
responding spectral weight. At higher energies there
are more triplets, not shown with very little spectral
weight. No other excitations have nonzero matrix ele-
ments, The solid circle indicates the singlet ground
state. The two solid lines represent E~(q) and E2(q)
which form the lower and upper boundary of the SWDC
in the thermodynamic limit.
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FIG. 2. (a) G (q, ~) in zero field for two differ-
ent q values: q =3~/5 and q=7I. (b) &ketch of G, (q, t )
for g&0, for a singEe q, q ~q . Two divergences result
at T =0, corresponding to the two partly overlapping
continua. The effect of 7' &0 is shown as the shaded
sketch, illustrating the double peak.
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for q-0 and q-v. The introduction of an upper cutoff at E,(q) is an important new feature of our calcu-
lations. E,(q) and E,(q) are the upper and lower boundaries of the SWDC, and the Luther-Peschel cal-
culation indicates that q = —,. Hence, explicitly,

G„(q,cu) =A[~' —(2')'sin'q] '"0(& —2~J sinq)8(pJ sin(-, q) —&u). (2)

= —(4E,/3N) (1 —cosq), (4)

where E, = —JN(ln2 ——,'). For our G„s~Dc(q, ~),
we obtain E„Dc(q)= (AJ'/4) (1—cosq), which re-
produces the correct q dependence. This result
validates the introduction of E,(q) as an upper
cutoff for t"„'~Dc.

We may now use (3) and (4) to determine the
constant A. The susceptibility is known exactly
at T = 0 and q = 0 to be )t„(0)= (m'J) ', ' which im-
plies that A = 2. For agreement with (4), however,
we must require that A =~6(ln2 ——,') =2.3635. . . .
The discrepancy is attributed to the approximate
nature of our G„,which neglects the effect
of higher triplet excitations'" included in the
complete G„(q, & &).

A third frequency moment gives the static cor-
relation function of integrated intensity,

C„(q)=—(1/2w) f, d(u G„(q, &. ), (5)

from which we obtain C„s Dc(q) = (A/2m) ln[(l
+~sin(-,'q)~)/cos-,'q]. This contrasts with the clas-
sical spin-wave result based on the fully aligned
Neel state, C,,"(q) = ~tan( —,q)~. C„(q) itself must
fulfill a sum rule

(1/2~) f;dq C„(q) =&(S,')') =-.', (6)

which forbids a power-law divergence of C„(q)
at the zone boundary (q =w), such as occurs in
the classical case, but allows a weaker logarith-
mic divergence. This is consistent with a conjec-
ture from finite-chain calculations that C„(m)

G„'~Dc(q, u) is sketched in Fig. 2(a) for two q
values. The jump at the upper cutoff depends on
the constant A, which will be approximately de-
termined from sum rules.

Three simple sum rules link G„(q, ~) to vari-
ous static quantities. The first relates G„(q,&u)

to the static susceptibility

X„(q)—= (1/2m) f "dv ~ 'G„(q, u'). (3

On substitution of (2), we obtain )t„c(q)= (A/
2m'J)q/sinq. For comparison, the classical re-
sult is y„"(q)—= [3J(1+cosq)] ', which has a dif-
ferent divergence at q =p.

A second sum rule relates G„ to the ground-
state energy, which is known exactly:

E„(q)= (1/2m) f"d&u mG, (q, +)

~ lnN. '" A third independent determination of A

may be made from (6). A value of 1.35 is ob-
tained, which, in comparison with values of 2

and 2.3635. . . gives a feeling for the accuracy
and consistency of our analytic expression. We
might suggest a "best" value for A of about 2.
Present experimental results are not sensitive to
the value for A.

The experimental pr edictions associated with
our expression for G„(q, & &) are that neutron-scat-
tering line shapes at low T should appear fairly
symmetric at small q, but develop a marked
asymmetry as q approaches m. This phenomenon
is indeed observed in recent experimental work
by Heilmann et a/. ' It can be seen in Ref. 7 (Fig.
4) that the experimental data for CPC lie consis-
tently below C„"(q). The data, however, are
quantitatively consistent with our C„(q),
which diverges more weakly [as ~ln(m -q)~ rather
than (w -q) '] as q —m.

Having established that the spin dynamics in H
= 0 is dominated by a triplet SWDC, we now pro-
ceed to examine the more complicated situation
for H &0, not previously theoretically investigat-
ed. For the case of a uniform magnetic field par-
allel to the z axis, there exist two partially over-
lapping double continua, instead of one, as shown
in Fig. 3. This result follows from (a) finite-
chain calculations, (b) exact selection rules which
show that turbo distinct classes of states exist with
nonvanishing matrix elements when B &0, and
(c) comparison with the XI' model for which exact
results are available. Again, the spectral weight
of G„(q, & ) increases towards the lower edge of
each continuum, as sketched in Fig. 2(b). There-
fore we predict that low-temperature neutron
scattering will reveal double-peak structure, ex-
cept at q =m, where the boundaries meet. This
two-peak structure is indeed observed in experi-
ments on CPC in a field of VO kOe. '

We are grateful to G. Shirane and to I. U. Heil-
mann for discussions concerning the new experi-
mental results, and to Professor H. Thomas for
helpful comments.
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FIG. 3. The two continua of excitations dominating
G~~(q, ~) at T=O and U =2Hcrft. They have a common
upper boundary. In each continuum the spectral weight
increases strongly towards the corresponding lowe~
boundary. The lowest boundary corresponds approxi-
mately to the Ishimura-Shiba spin-wave frequency (see
Ref. 4). The special wave number q depends only on
the magnetization. It is equal to ~ at H =0 and decreas-
es as H increases, reaching zero at the critical field
&cr« ~
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The continuous-transfer-matrix technique, together with the dilute-gas approximation,
is used to study the thermodynamics and static properties of the linear-chain planar mod-
el. Explicit analytic expressions for the free-energy and spin-spin correlation functions,
as a function of temperature, symmetry-breaking fields, and density of solitons, are
given. The correlation length is predicted to increase exponentially as the temperature
goes to zero. This result should be seen in elastic neutron scattering experiments on
CsNiF3.

In a recent paper Kjems and Steiner' (KS) ar-
gued that the central peak found in their neutron
scattering experiment on CsNiF, in the presence
of an external magnetic field is clear evidence
for the existence of soliton excitations. KS found-
ed their assertions on Mikeska's' results for the
spin-spin dynamic correlation function (SSCF) for
the ferromagnetic planar model which has been
shown' to represent CsNiF, at low temperatures.
Mikeska considered the soliton contribution to
SSCF but did not study the relevance of the other
excitations in the problem, namely, magnons,

breathers, and the coupling between them. More-
over, it is not obvious that the SSCF decouples
to give an independent soliton branch in the dy-
namic structure factor which was the basis for
Mikeska's argument.

In this paper we present a systematic analysis
of the equilibrium properties of the planar model
with and without symmetry-breaking fields. Our
analysis takes into account, frprn the start, the
presence of the solitons in the model. From our
results we can actually see how the decoupling of
the dynamic SSCF into the magnon and soliton
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