Random Magnetic Fields, Supersymmetry, and Negative Dimensions

G. Parisi

Istituto Nazionale di Fisica Nucleare, Frascati, Italy

and

N. Sourlas

Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, 75231 Paris Cédex 05, France (Received 26 June 1979)

We prove the equivalence, near the critical point, of a *D*-dimensional spin system in a random external magnetic field with a (D-2)-dimensional spin system in the absence of a magnetic field. This is due to the hidden supersymmetry of the associated stochastic differential equation. We identify a space with one anticommuting coordinate with a space having negative dimensions -2.

The critical behavior of a spin system in a random external magnetic field (i.e., the infrared behavior of a scalar field theory in presence of a random external source) has recently been investigated.¹ By explicit computations it has been found^{1,2} that the values of the most-infrareddivergent diagrams³ in dimensions D are equal to the values of the same diagrams without magnetic fields in dimensions D-2. In this Letter we show that this apparently mysterious result has a simple geometrical interpretation, which stems from a hidden supersymmetry⁴ of the associated stochastic equation.

Let us define the free energy F_R averaged over a Gaussian random magnetic field by the functional integrals⁵:

$$F[h] = \ln \int \mathfrak{D}_{\varphi} \exp\{-\int d^{D}x [\mathcal{L}(x) + h(x)\varphi(x)]\},$$

$$F_{R} = \int \mathfrak{D}h F[h] \exp[-\frac{1}{2} \int d^{D}x h^{2}(x)], \qquad (1)$$

$$\mathcal{L}(x) = -\frac{1}{2}\varphi(x) \Delta\varphi(x) + V(\varphi(x)).$$

For definiteness we can consider $V(\varphi) = \frac{1}{2}m^2\varphi^2 + g\varphi^4$. The perturbative expansion in g for F_R can be easily constructed either by direct inspec-

tion, or by using the replica trick.⁶ The mostinfrared-divergent diagrams contain the maximum number of h^2 insertions, as follows from dimensional analysis. If the other diagrams are neglected we obtain the tree approximation for F(h). Using the correspondence between the tree approximation⁷ and the classical nonlinear differential equation, we find that in this limit the twopoint Green's function is given by

$$\langle \varphi(\mathbf{x}) \varphi(\mathbf{0}) \rangle_{\mathbf{R}}$$

~ $\int \mathfrak{D} h \varphi_h(\mathbf{x}) \varphi_h(\mathbf{0}) \exp\left[-\frac{1}{2} \int d^D y h^2(y)\right],$ (2)

where $\varphi_h(x)$ is the solution of the equation

$$-\Delta \varphi + V'(\varphi) + h = 0.$$
⁽³⁾

Equation (3) can also be regarded as a differential stochastic equation, *h* being a stochastic Gaussian function having autocorrelation $\langle h(x)h(y)\rangle$ = $\delta^{D}(x-y)$. The results of Refs. 1 and 2 imply that the Green's functions of the stochastic differential equations (3) are the same as those generated by the Lagrangian of Eq. (1) in D-2 dimensions. Let us see why.

Using standard manipulations,⁸ we find

$$\langle \varphi(x) \varphi(0) \rangle \sim \int \mathfrak{D} \varphi \mathfrak{D} h \varphi(x) \varphi(0) \, \delta(-\Delta \varphi + V'(\varphi) + h) \, \det[-\Delta + V''(\varphi)] \exp[-\frac{1}{2} \int h^2(y) d^D y]$$

$$\sim \int \mathfrak{D} \varphi \mathfrak{D} \omega \mathfrak{D} \psi \exp[-\int d^D y \mathfrak{L}_R(y)] \, \varphi(x) \varphi(0) ,$$

$$\mathfrak{L}_R = -\frac{1}{2} \omega^2 + \omega [-\Delta \varphi + V'(\varphi)] + \overline{\psi} [-\Delta + V''(\varphi)] \psi ,$$

$$(4)$$

where ψ is an anticommuting scalar field⁹ (a ghost field). The Lagrangian \mathcal{L}_R is invariant under the supersymmetry transformations:

$$\delta \varphi = -\overline{a} \epsilon_{\mu} x_{\mu} \psi, \quad \delta \omega = 2\overline{a} \epsilon_{\mu} \partial_{\mu} \psi,$$

$$\delta \psi = 0, \quad \delta \overline{\psi} = \overline{a} \left(\epsilon_{\mu} x_{\mu} \omega + 2 \epsilon_{\mu} \partial_{\mu} \varphi \right),$$
(5)

 \overline{a} being an infinitesimal anticommuting number and ϵ_{μ} an arbitrary vector. The invariance under these supersymmetry transformations [Eq. (5)] is quite unexpected.¹⁰ It is useful to introduce the superspace⁴ characterized by a *D*-dimensional commuting coordinate x and by an anticommuting coordinate θ ($\theta^2 = \overline{\theta^2} = \theta \overline{\theta} + \overline{\theta} \theta = 0$) and the superfield.

$$\Phi(x,\theta) = \varphi(x) + \overline{\theta}\psi(x) + \overline{\psi}(x)\theta + \theta\overline{\theta}\omega(x).$$
(6)

Higher orders in θ are identically zero as a re-

sult of the anticommuting properties of θ . The action [Eq. (4)] can be written as $\int d^{D}x d\theta \mathcal{L}_{ss}(\Phi)$, with

$$\mathcal{L}_{ss}(\Phi) = -\frac{1}{2}\Phi\Delta_{ss}\Phi + V(\Phi), \tag{7}$$

where $\Delta_{ss} = \Delta + \partial^2 / \partial \overline{\partial} \partial \theta$ is the Laplacian in the superspace and the integration in θ selects the term proportional to $\theta \overline{\theta}$ [e.g., $\int d\theta \Phi(x, \theta) = -\pi^{-1} \omega(x)$].¹¹

The supersymmetry transformations [Eq. (5)] are simply rotations in superspace leaving invariant the metric $x^2 + \theta \overline{\theta}$. We argue that the superspace (x, θ) is equivalent to an ordinary (D - 2)-dimensional space. Indeed a space with only one anticommuting coordinate θ is equivalent to an ordinary space with negative dimensions -2. (Space with negative dimensions are defined by analytic continuations¹² from positive dimensions.) This can be seen from the relation

$$\int d\theta f(\overline{\theta}\theta) = -\frac{1}{\pi} \frac{d}{dz} f(z) \Big|_{z=0} = \lim_{D \to -2} \int d^D r f(r^2) = \lim_{D \to -2} S_D \int r^{D-1} dr f(z^2), \quad S_D = 2\pi^{D/2} / \Gamma(\frac{1}{2}D).$$
(8)

 S_D is the surface of the unit sphere in D dimensions.

Let us consider a space of dimension D-2 and formally decompose it as the sum of a space of dimension D and of another space of dimension -2. The previous argument implies that an ordinary space of dimension D-2 is equivalent to the D-dimensional superspace. The precise meaning of the equivalence is the following:

$$\int d^{D-2}x F(Y_i x, x^2) = \int d^D x d\theta F(Y_i x, x^2 + \overline{\theta}\theta), \qquad (9)$$

where Y_i are some (D-2)-dimensional vectors. For example,

$$\int d^{D-2}xf(x^2) = \int d^D x d\theta f(x^2 + \overline{\theta}\theta) = -\pi^{-1} \int d^D x f'(x^2) = \int d^{D-2}x f(x^2).$$
(10)

Equation (9) is sufficient to prove, at all orders in perturbation theory, that the Green's functions computed in the D-2 space are the same as those computed in the *D*-dimensional superspace. Indeed, the perturbative expansion for the Lagrangian (7) [which is equivalent to the stochastic Eq. (3)] can be written directly from Feynmann's rule in configuration superspace using the technique of superpropagator.¹³ The final integrals have the form of Eq. (9) and the equivalence of the stochastic Eq. (3) with the (D-2)-dimensional field theory is therefore proved in the perturbative expansion. It has its root in the hidden supersymmetry of the system and in the geometrical equivalence of an anticommuting-variable space with a negative-dimensional space.

It may be useful to establish this equivalence rigorously beyond perturbation theory. The stochastic differential Eq. (3) may provide us with a different framework to study the properties of a field theory. It would be quite interesting to see if and how this formalism can be extended to gauge theories.

Laboratoire de Physique Théorique de l'Ecole Normale Supérieure is a laboratoire propre du Centre National de la Recherche Scientifique, associé à l'Ecole Normale Supérieure et à l'Université de Paris-Sud. ²A. P. Young, J. Phys. C <u>10</u>, L257 (1977); E. Brézin and G. Parisi, unpublished.

³The approximation of keeping only the most-infrareddivergent diagrams may be justified near the critical point.

⁴A supersymmetry transformation mixes commuting and anticommuting (boson and fermion) fields. For a review on supersymmetry, see for example, P. Fayet and S. Ferrara, Phys. Rep. <u>32C</u>, 249 (1977).

⁵Green's functions can also be defined using a similar procedure.

⁶S. F. Edwards and P. W. Anderson, J. Phys. F <u>5</u>, 965 (1975).

⁷K. Symanzik, in *Lectures in Theoretical Physics*, edited by E. Brittin, B. W. Downs, and J. Downs (Interscience, New York, 1961), Vol. III.

⁸P. C. Martin, E. D. Siggia, and H. Rose, Phys. Rev. A <u>8</u>, 423 (1973); B. I. Halperin, P. C. Hohenberg, and S.-k. Ma, Phys. Rev. B 10, 139 (1974).

⁹The definition of anticommuting functional intergrations can be found in F. Berezin, *The Method of Second Quantization* (Academic, New York, 1966).

¹⁰This Eq. (5) is similar to the Becchi-Rouet-Stora transformation in gauge theories; C. Becchi, A. Rouet, and R. Stora, Ann. Phys. (N. Y.) <u>98</u>, 287 (1976).

¹¹The factor $-1/\pi$ has been introduced for later convenience.

¹²C. G. Bollini and I. J. Giambiagi, Phys. Lett. <u>40B</u>, 566 (1972); K. G. Wilson and M. E. Fisher, Phys. Rev. Lett. <u>28</u>, 240 (1972); G. 't Hooft and M. Veltman, Nucl. Phys. <u>B44</u>, 189 (1972).

¹³A. Salam and J. Strathdee, Nucl. Phys. <u>B76</u>, 477 (1974), and <u>B86</u>, 142 (1975); R. Delbourgo, Nuovo Cimento <u>25A</u>, 646 (1975).

¹Y. Imry and S.-k. Ma, Phys. Rev. Lett. <u>35</u>, 1399 (1975).