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Potts model and enables us to extend it to tricrit-
ical exponents as well.

The two-dimensional q-state Potts model is de-
fined by the Hamiltonian'

where the summation is over all nearest-neighbor
pairs on a lattice. Each spin variable s; can as-
sume q values. The transition temperatures of
the Potts model, J, '(q), are known by duality
relations for the square' and triangular lattices. '
As noted above, Baxter' inferred for the square
lattice that the phase transition is first order for
q & q, and continuous for q ~ q„where q, = 4. It
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FIG. 1. Phase diagram of the Potts lattice gas in the
space of temperature, J, fugacity, e 3, and num-
ber of states, q.

A generalization of the Niemeijer-van Leeuwen renormalization-group transformation
treating disordered cells of spins as vacancies is introduced and applied to the two-dimen-
sional q-state Potts model. Finite-lattice approximations yield the changeover from con-
tinuous to first-order phase transitions predicted by Baxter but not observed in previous
renormalization-group calculations. Exact results are conjectured for the tricritical ex-
ponents of dilute Potts models.

The two-dimensional q-state Potts model' has
been the subject of considerable theoretical inter-
est. It is known that the model is related to other
systems of unusual interest such as the eight-ver-
tex, Ashkin- Teller, and E models. " Using the
latter equivalence, Baxter' showed that the phase BZ e~jt

transition of the Potts model is continuous for q
& q, and first order for q & q, with q, =4. Numer-
ous position-space renormalization-group (RG)
methods have been applied to this problem and
have failed to detect these first-order transi-
tions." This deficiency is intriguing because
the same calculations give accurate critical ex-
ponents for q & 4.4 Furthermore, first-order
transitions have been successfully described by
RG methods in other contexts. ' The failure indi-
cates either an inherent difficulty with the posi-
tion-space methods or an incomplete realization
of RG ideas by these calculations. In this Letter
we demonstrate the latter to be the case by gen-
eralizing the Neimeijer-van Leeuwen (NvL) meth-
od' and applying it to the ferromagnetic q-state
Potts model. The new, physically motivated fea-
ture of the RG transformation is that disordered
configurations of the spins in a cell are assigned
to a special cell state corresponding to a vacancy.
This RG necessitates an extension of the Hamil-
tonian space to include lattice-gas terms. We ob-
tain a critical value q, such that transitions are
continuous for q ~ q, and first order for q& q,.
For the simplest approximation q, = 4.7. Figure
1 shows the topology of the resulting phase dia-
gram. This topology supports a recent conjec-
ture' concerning the critical exponents of the
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is believed that q, is lattice independent. Becent-
ly den Nijs3 proposed an empirical relation that
expresses the thermal Potts exponents for q ~ 4
in terms of those of Baxter's' eight-vertex model,

where y'" =2lu/~ with cosp, =2+@. The values for
the exponents agree with the exact results for q
=2 and q =4, 'o and they are consistent with the
predictions from series-expansion and BG meth-
ods. Although the BG calculations yielded good
exponents, they consistently failed to obtain the
known first-order transitions and produced in-
stead continuous transitions for all finite q.

In the position-space BG method a Potts Hamil-
tonian K(s) is mapped by means of a, weight factor
onto a, renormalized Hamiltonian K'Is') of fewer
variables s'. Each such variable is associated
with a cell of spins in the original lattice. In the
usual approach"" the variables s' are also taken
to be Potts spins. This is a sensible choice if all
or a majority of spins in a cell are in the same
state. It is a questionable choice, however, when

many or all of the spins in the cell are in differ-
ent states. For example, in the latter case a
common mapping assigns to the Potts-cell spin
each of the different states represented in the
cell with equal weight. This suggests that such
a cell can interact ferromagnetically with its
neighbors, which overestimates the tendency to
order. On the contrary, we expect that a com-
pletely disordered cell has little aligning inQu-

ence on neighboring cells. Viewed on the larger
scale of the renormalized system it acts much
like a vacant site. Therefore, we propose to gen-
eralize the weight factor so that disordered con-
figurations are assigned (fully or with a fraction-
al weight) to the empty state or vacancy. With

this new prescription, a simple Potts model wiQ

be mapped under the BG transformation to a di-
lute Potts system or Potts lattice gas, "'"in
which the variables s' consist of a lattice-gas
variable t; =0 (vacant) or l (occupied) and, in the
latter case, a Potts variable s; =1,2, ..., q. Thus
the BG transformation acts in the parameter
space characterized by the nearest-neighbor
Hamiltonian

—Psc= g t; t, (K+j5, , ) —hat. ;.
&f, j&

The couplings K and J denote lattice-gas and
Potts interaction parameters, respectively, and

the chemical potential & governs the concentra-
tion of vacancies. The pure Potts model corre-

sponds to chemical potential & = — or, equiva-
lently, K = ~. In terms of the variables s; the
Ha.miltonian (3) has the symmetry of the q-state
Potts model.

We applied these ideas to the q-state Potts mod-
el on a triangular lattice for continuous values of
q. A two-cell approximation with three spins per
cell was employed. In order to guarantee the cor-
rect ground-state energies necessary to describe
the first-order transition' each cell was surround-
ed by six replicas of the other. Ab initio there
was little guidance as to the weight factor which
determines the relation between cell and site
spins. We chose a generalized majority rule: If
all spins in a cell are in the same Potts state or
if two spins are in the same state and the third
is vacant, the cell spin is in that Potts state. All
other configurations are assigned to the vacant-
cell state. Note that this permits the generation
of vacancies even for the Ising model. The cal-
culation yielded continuous transitions for the q-
state Potts model for q- q, and first-order transi-
tions for q& q, with q, =4.73. The results are dis-
cussed in detail below. Variations of the weight
factor resulted in larger q, and poorer values for
the exponents. Preliminary investigations of a
three-cell approximation yielded similar results.

The following picture emerges from these cal-
culations. Figure 1 shows schematically the top-
ology of the BG Qow diagram in the space of tem-
perature, J ', fugacity, e ', and number of
states q. The surface A.

BCEUF

separates the ferro-
magnetic and disordered phases. Within this sur-
face there are lines of critical fixed points, ZI',
and tricritical fixed points, GI', which meet at E
for q =q, . CB is a line of discontinuity fixed
points. ' The intersection AB of the surface with
the plane e ' =0 corresponding to the pure Potts
problem defines the critical temperature J, '(q)
of the Potts model. The BG trajectories lie in
planes of constant q. Thus, flows that begin at
the transition temperature of the (pure) q-state
Potts model are attracted by the critical fixed
line for q & q, and by the first-order fixed line
for q& q, . We note that the fixed line EEG is
analogous to the fixed line in the Kosterlitz- Thou-
less description of the XY model. ' The quantity

q, plays a role analogous to the Kosterlitz- Thou-
less temperature. In our approximation q, = 4.73
compared to Baxter's exact result q, =4.' Note
that the effects of increasing q and of increasing
dilution are similar, for both drive the transition
first ordero

The tricritical fixed points for integer q are of
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TABLE I. Critical temperature J, and exponent y
for the pure Potts model and tricritical exponent

yt ~ ~q for the dilute Potts model. Exact or conjec-
tured results are shown in parentheses.

y I.O
1.89 (1.82)
1.41 (1.59)
1.22 (1.44)
1.12 (1.84)
1.05 (1.27)

0.74 (0.75)
1.08 (1)
1.82 (1.2)
1.49 (1.5)
2 (2)
2 (2)

1.94 (1.875)
1.90 (1.8)
1.86 (1.714)
1.80 (1.5)

0 I 2 5 4 5 6
q

FIG. 2. Critical and tricritical exponents (lower and
upper branch, respectively) from the two-cell approxi-
mation (solid curve) and the extended conjecture of den
Nij s.

physical interest for q =2 (Blume-Emery-Grif-
fiths model" ) and for q =3." At these points q
+1 phases are simultaneously critical, of which

q are identical and one is singled out. In general
the symmetry is not that of the (q+1)-state Potts
model. Only for the special value q =1 is the tri-
critical fixed point identical to the q+1 (Ising)
ferromagnetic critical point. Our results indicate
an interesting relation between the exponents of
the tricritical points and those of the critical
points of the Potts model. In Fig. 2 we show the
values of the most relevant exponent, y =v ', of
the critical and tricritical fixed points as obtained
by our two-cell approximation. The lower branch
of the dashed line shows the conjecture of den
Nijs, Eq. (2), for the critical exponents. ' Accord-
ing to the topology of our BG, the tricritical ex-
ponents should be an analytic continuation thereof
and this is shown as the upper branch of the
dashed curve. It is noteworthy that we can ex-
tend den Nijs's conjecture to the tricritical expo-
nents for the Blume-Emery-Griffiths model (y
=-,') and the three-state Potts lattice gas (y =+7a).
This extended conjecture is supported by the fact
that it reproduces the correct Ising exponent for
q=1, which is y = '

—,'. Table I summarizes the
numerical results for the exponents and gives in
parentheses the values from the extended den Nijs
conjecture. At q =1 the approximation fails to
map any point of the pure axis towards the criti-
cal fixed point. Finally we mention that the be-

havior of the latent heat exhibits, in the vicinity
of q„ the same essential singularity in q as Bax-
ter's exact result. '

In summary, we have generalized on physical
grounds the usual BG transformations so that dis-
ordered sets of variables are mapped to vacan-
cies. We have applied this idea to the two-dimen-
sional Potts model in a simple approximation and
obtained the changeover from continuous to first-
order transitions. In addition a strong indication
of a relation between critical and tricritical ex-
ponents emerged. The basic idea is easily incor-
porated into common approximation methods and
we expect that it can be applied advantageously
to a wide variety of problems.
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We present numerical estimates of the Hausdorff dimension D of the largest cluster
and its "backbone" in the percolation problem on a square lattice as a function of the con-
centrationP. We fine that D is an approximately linear function of P in the region near
P =p, (=0.59) with a dimension about equal to that of a self-avoiding walk whenp = 0.455.
The dimension of the backbone, or biconnected part, of the largest cluster equals that of
the self-avoiding walk whenp =p, . Atp =p, the dimension of the largest cluster equals
the anomalous dimension introduced by Stanley et 4.

C

In analysis of experiments on magnetic systems plication of the second method.
Birgeneau et a~.' and Stanley et al.' recently sug- In the percolation system we estimate DH from
gested a self-avoiding random walk (SAW) as a the relation of the average size n, of the largest
model for the largest cluster in a percolating net. cluster to the total size ~' of the percolating net.
Qualitative arguments were presented suggesting We find empirically that n, varies with n as n,
that the geometrical properties of the clusters =Kn" where K and y are constants (see Fig. 1).
were similar to those of the SAW. Here we study (This relation is expected when na is less than
this interesting suggestion by estimating the di- the coherence length $.) We note that n, can also
mension of each of the two structures numerical- be regarded as an upper bound on the number of
ly. disks of size g =a required to cover the largest

The dimension which we estimate is the Haus- cluster in a net of size ~'. For fixed a and for
dorff-Besicovitch dimension DH which is defined each n we introduce a change of length scale x'
so that a. particular structure is covered by a min- =x/na. In terms of this length scale the covering
imum of N(q) disks of radius g and lim„eN(qg of the largest cluster in the net of size n is by
is finite. We have checked that direct application disks of radius 71' =g/na =1/n. Thus each value
of this definition to numerically estimate DH for of n corresponds to a different covering. Using
a self-avoiding walk (SAW) in two dimensions n, =Kn2' we have N(q ') = n, =Kns =K(g ') 2' or D
gave results consistent with the value' DsA~ =1.33 =2y. By the argument just given, these D's are
obtained by finding the mean end-to-end distance an upper bound on the Hausdorff dimension. We
{r') as a function of the number of steps n (Writ- . do not have a quantitative estimate of the error
ing {r')= n'"' it is easy to show that DsA& =1/&,.) involved in treating D as an estimate for DH. We
We have also checked the value D»~ =1.33 by ap- have two indications that the error in using D as
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