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Asymptotic formulas are derived for the high ord-er perturbation coefficients for the
hydrogen Zeeman Hamiltonian. The calculation of 100 coefficients in the series for the
ground state are also reported. The method of calculation is based on tilting the Hamil-
tonian by a generator of SO(2, 1) and the algebraization of the problem by means of the
dynamical group SO(4, 2).

Bender and Wu' developed a theory for the high-
order terms in the Hayleigh-Schrodinger series
based on its identification with negative moments
of the tunneling probability. ' ' More recently,
related instanton techniques have been applied to
the much harder problems of self-interacting
field theories, for example to the calculation of
the renormalization P function and to critical ex-
ponents. ' ' For reasons that are not yet well
understood, the zero-temperature and the high-
order limit sometimes fail to commute. ' This is
the case in the hydrogen Zeeman Hamiltonian;
so instanton (partition-function) techniques are
not applicable even to the asymptotics of the
ground state. (For related questions for the hy-
drogen Stark Hamiltonian, see L. Benassi et al.'

In the application of Bender-Wu theory to three-
dimensional problems it has been necessary to
devise special methods suitable for the particu-
lar system. Thus for the anharmonic oscillator
Banks, Bender, and Wu made use of the fact that
the motion transverse to the escape tubes is har-
monic. ' For the hydrogen Stark effect, Benassi
et al.' used separability in parabolic coordinates.
The hydrogen Zeeman Hamiltonian does not sepa-
rate and we shall here employ the theory of eiko-
nals to implement the Bender-Wu theory. This
method is applicable to a large class of problems.

The spinless hydrogen Zeeman Hamiltonian is

for the ground state, our first major result is

E„=C„[1+0(1/n)],

( 1)
n + 1(4/s )5 12(8/p 2)"(2n + ~s) t .

Let us briefly sketch the derivation of (3) and
its generalization to excited states. It is con-
venient to scale (1), so that

h(Z) =p'- I/~ r~ -h(x'+y'), (4)

with ground state e(X) =g„.,a„(-A)" and E„=2a„/
8". As usual, let us denote I (A.) =21m'(A. ). The
following dispersion relation is assumed to hold'.

a„=(- 1)""~s
- I (x)

n+& d~ ~

2 l =l/r' —2%i, l' =x'+y', 2Z =z/r'. (7)

I is related to the outgoing current at infinity
which will be computed semiclassically. With
P(r) =p'"(r) exp[i p(r )], multidimensional WKB
gives'

I'=2f „cp( )Qs' "ivy ds,

where 0 is now a small ball around the origin and
J(Q) is the classical action from Q Bc to the
caustic. The hard part is to obtain sufficiently
accurate estimates of Z(Q).

The classical equations of motion are

&(B)=2p' —- + —B'(xs'+y')+ B ~ L2.
lrl

(The perturbation series is known to be Borel
summable. ') If we write

E(B) = QE„(B /8)"
n=0

(2)

The eikonal theory provides us with the initial
conditions for trajectories starting from the sur-
face c. Inside o, p(r) is approximated by the un-
perturbed ground state. V'p on 0 gives the initial
momenta. In principle, we have to integrate
equations (7) for all the trajectories starting
from cr. In practice, however, we integrate the
equRtions in R limit involving two small pRrRme-
ters: A. , the field strength; and a, the latitude of
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the point 0&0. The smallness of A comes from
Eq. (5) and the smallness of n comes from the
fact that the equatorial plane is the most probable
escape path. This means that we estimate I'(A. )
to the leading orders in X. This is the origin of
the O(l/n) term in (3). Equations (7) can be
solved by classical perturbation techniques to
yield the trajectories. These are readily inte-
grated to give the action and finally

TABLE I. The first ten coefficients for the energy ap-
pearing in Eq. (2).

E(1) = 2

E(2) = —53/3
E(3) = 5581/9
E(4) = —21577397/540
E(5) = 31283298283/8100
E(6) = —13867513160861/27000
E(7) = 5337333446078164463/59535000
E(8) = —995860667291594211123017/50009400000
E(9) = 86629463423865975592742047423/15752961000000
E(10) = —6127873544613551793091647103033033/3308121810000000

where r, is the radius of 0. This gives

I' = exp{-~/8X'")/2'"X'",

to leading orders in A. .
The method outlined above generalizes straight-

forwardly to excited states. ' Because of the de-
generacy of the excited states, the situation is
somewhat more complicated.

In order to verify these asymptotic results, we
now describe the application of group-theoretical
methods to the evaluation of 100 terms in the per-
turbation series for the ground state. In the ap-
plication of perturbation theory difficulties arise
from the continuous part of the spectrum of the
unperturbed Hamiltonian. To overcome these dif-
ficu1ties two possible approaches may be taken.
The first is to use the dynamical SO(4, 2) group,
which also offers a complete algebraization of
the problem. ' " A suitable choice of the rotation
angle about the T, generator of SO(2, 1) eliminates
the continuous part of the spectrum at the small
price of loosing self-adjointness. Moreover, in
the basis of the eigenfunctions of T„ the result-
ing operator is an infinite matrix that vanishes
except on the "five principal diagonals. "' The
second possibility is to use the Dalgarno-Lewis
procedure in which integration over the continu-
ous part of the spectrum is replaced by the solu-
tion of differential equations. Galindo and Pas-
cual calculated the first five coefficients in (3) in
this way. "

The algebraic SO(4, 2) method results in a rela-
tively simple computer implementation. Cfzek
and Vrscay' calculated the first 40 coefficients
and used them for Pade summation of the series.
Their calculation has now been extended to the
first 100 coefficients (the full tables shall be pub-
lished elsewhere) Differen.ce-table analysis
makes us confident that the coefficients we have
are accurate to at least ten significant figures.
The first ten coefficients are known exactly and
are presented in Table I.

A fit of the coefficients E„has been made by as-
suming (following Bender and Wu')

E„=C„[A,+A, /n +A,/n'+. . .], (10)

with C„given in (3). The fit near n = 50 gives A,
=1.000000098 with A» A» and A, stabilized.
With use of the first 69 coefficients andA, =1,
the best fit gave

A~ 2 6183~ A2 1 283~ A3 2 6

Higher A&'s did not stabilize. Equation {10)with
A, in (11) is then accurate to within 0.17%%uo for n
=11 and 0.00004% for n =69. As a result of this
fitting procedure and the high accuracy of the co-
efficients thus obtained, we are confident that the
asymptotic formula (3) is correct.

We have turned our attention to a recent paper
by Killingbeck" concerning the ground-state
quadratic Zeeman effect containing two very in-
teresting results, namely a very successful cal-
culation of upper and lower bounds for the energy
using Brillouin-Wigner perturbation theory and
a partitioning of the Hamiltonian which permitted
him to obtain even better bounds using a one-di-
mensional numerical procedure. In a forthcom-
ing paper we shall discuss the relationship of our
work with that of Killingbeck in more detail; how-
ever, let us point out that the goal of the present
work was simply to investigate by analytical
methods the asymptotic properties and summa-
bility of the divergent Hayleigh-Schrodinger per-
turbation expansion because of possible implica-
tions in similar problems arising in quantum
field theories rather than to obtain accurate nu-
merical results for the energy.
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Using a technique based on the Doppler shift, we have measured the dependence of rate
constants for Na2* —Xe rotation-changing collisions on the relative velocity For N.a2* in
the ~'&„+ electronic state, we made measurements for four different values of the change
in Na2* angular momentum, ~= jf —jo, for each of three initial jo's. Cross sections for
jo= 66 increase with velocity whereas those for jo= 38 and 16 stay constant or decrease.
A dramatic decrease is observed for jo= 16 and large ( 4 ~.

We report measurements of the velocity depen-
dence of the rate constant k for the process

Na, *(18,j,) +Xe- Na, *(18,j, +4) +Xe

when Na, *(v, j) is a sodium molecule in the vth
vibrational and jth rotational level of the A'Z„'
electronic state. Measurements were made for
j,=16, 38, and 66, and for several values of 4
at each j, (we saw no evidence of perturbations'
of line position or intensities). This inelastic
process, often termed "rotational energy trans-
fer" (RET), is dominant in most thermal-energy

atom-molecule collisions, and its detailed under-
standing is critical for thorough understanding of
other inelastic atom-molecule processes such as
vibrational energy transfer and chemical reac-
tion. The present study represents, as far as
we know, the first study of the velocity depen-
dence of any inelastic atom-molecule process in
which specific rovibronic levels of the molecule
were selected before the collision and analyzed
afterwards. '

Velocity selection was achieved by use of the
Doppler-shift' ' (VSDS) technique to select one
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