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Nonleading quantum chromodynamic corrections to e*e” annihilation into hadrons are
computed. Comparison with experiment is briefly discussed.

In quantum chromodynamics (QCD), processes
which probe the structure of hadrons at short
distances may be investigated with use of pertur-
bation theory and the renormalization group.!
The photon vacuum polarization tensor,

q,9,)1(-q?)

for g2 large and spacelike, is one such short-
distance probe. II(-g?) and R=0(e*e” —hadrons)/
ole*e” = Ut u”) can be related through dispersion
relations or smearing methods.? In regions be-
tween new quark thresholds, where the cross sec-
tion is reasonably smooth, one may hope to ob-
tain R directly from the discontinuity of II(-g2).
The leading QCD corrections to I (- ¢?) are well
known,® and arise from the renormalization-group
improvement of the graphs of Fig. 1(a). In this
paper we report a calculation of II (-¢?) through
order g*, arising from the graphs of Fig. 1(b).
This calculation is necessary in order to deter-
mine if higher-order corrections are small, and
in order that one may compare the strong coup-
ling constant determined from measurement of
R with that measured in other processes, such
as deep-inelastic scattering. To address the
first issue we will employ two renormalization
schemes, the minimal scheme (MS) of ’t Hooft

npy(‘l)=i(q2guu—

and a modified scheme (MS) due to Bardeen etal.*
This latter scheme has been shown to lead to a
more satisfactory perturbation series than MS
in deep-inelastic and photon-photon scattering,
and the same will be seen to be true here.

The problem of determining the strong-coup-
ling constant can be understood in terms of the
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FIG. 1. (a) Graphs whose discontinuity gives R to or-
der g2. (b) Graphs whose discontinuity gives R to order
4
g
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mass, A, which is frequently used to parametrize the running coupling. The running coupling constant,

a (- ¢?), may be written*

ay (=% = a(=q%) - (B,/418,) [ (- ¢*)] Inln(- g7/ A%) + O((a )%,

where
a (- q?) =4n/B,In(- ¢*/A?) (2)
B,=(11/3)C, - &N, (32)
B,=(34/3)C2 - (10/3)CAN, - 2Cp Ny (3b)

(Ref. 5). In these expressions, C, and C are the
quadratic Casimir operators for the adjoint and
fermion representations, respectively, and N; is
the number of quark flavors [for SU(N), C,=N
and Cp=(N2~1)/2N]. As several authors have
noted, in order to make a meaningful determina-
tion of A, it is necessary both to use the expres-
sion above for a, and to compute all corrections
to the process of interest through order (a/’)%.*?®
The necessary calculations have already been
performed for deep-inelastic and photon-photon
scattering®; our calculation is necessary to put
.R on the same footing.

The calculation was performed using the dimen
sional regularization procedure of ’t Hooft and
Veltman,” in which Feynman amplitudes are con-
tinued to 4 — € dimensions and ultraviolet diver-

B

-3¢/2
(6) =& g z I:__é_o_ 2 ] 3e selz( _ g%\
I, ﬂ(%z) Ce[- 12+ Zro)|r (14 5 ) amyele (- L)

@)

| gences appear as poles as € =0. We work in
Feynman gauge and set all quark masses equal

to zero. Integrals involving self-energy inser-
tions were performed by use of spectral repre-
sentations. The remaining integrals were per-
formed by introducing Feynman parameters and
performing the momentum integrals. Subdiver-
gences in the resulting parameter integrals were
treated by adding and subtracting from the inte-
grand simpler functions with the same singularity
structure, along the lines of Cvitanovié and Kino-
shita.® This procedure yielded a finite integral
which was evaluated numerically,’ along with di-
vergent integrals which were performed analy-
tically.

For each diagram we obtained only the coeffi-
cient of ¢,4,, which can be identified with g,q,
—q"‘gu,, in gauge-invariant sets of diagrams. The
results are presented in Table I, where the coef-
ficients of 1/€3, 1/e2, and 1/€ are given, The
numerical errors in each diagram are less than
0.4%, though, as a result of large cancellations,
the error in the sum is 2%. Calling the sum of
the graphs of Fig. 1(b) I, ® we find

(4)

Table I. Pole terms from the graphs of Fig. 1(b), where a common fac-

)]

tor

2\2 2
a8 3€ se/2(_ 4"
(5 (&) (e (-2

has been taken out.

Weight 1/€8 1/¢€? 1/
A 2C;° -1/18  —4/27 —-0.1839
B Cs -1/18  —4/217 -0.1978
c 2C g -1/36  —35/432 -0.1226
D 2Cp(Cr—C/2) 1/18 29/216 0.1642
E 4C g 1/12 47/144 0.3016
F Cp(Cr—C4/2) 0 1/9 —-0.0625
G Cgt -1/9 —115/216 - 0.5757
H 2C(Cp—Ca/2) -1/18  —59/216 —-0.0322
I 2CEC4 -1/12  —61/144 —0.4240
J 2CsC 4 1/12 43/144 0.4714
K+L CiCa 0 —i————ZNB (:CSACA 0.00679N;/C 4 —0.0447
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where
B =0.0212Cy - 0.0506 C, +0.00579N,. ) ' (5)

The mass, U, is arbitrary, and is introduced to give the coupling constant correct dimensions in
4 - € dimensions. To take account of the QCD counterterms, we add to II,®

Mer® = f—(%)z C;[- ¢ + Dro@ra ) (- Z—Z)G : (6)
where

D=0.0564, (7a)

= — (Bo/2¢)(g?/4n*)(1 + Me). (7o)

The term in brackets in Eq. (6) is the unsubtracted two-loop contribution. Z is the sum of all one-loop
counterterms (the two-loop counterterms cancel). The prescription dependence of the calculation en-
ters through the finite part of Z, which is arbitrary. In the minimal scheme, counterterms are intro-
duced in each order so as to cancel only the pole parts of the divergent quantities. The MS scheme is
defined by absorbing all factors of ln4m-y, where ¥ is Euler’s constant, into the renormalized coupling
constant (this amounts to rescaling A). For MS, M =0, while for MS, M =(ln4n-y)/2. Before subtrac-
tion, we have, expanding II(® = I1,{®) + IIc1®) in powers of €,

160 =(2) () g + B0 _ By (_2)

WA S 242 8¢ 32 2

2

_L\[ & —— ) — ﬁ]
+1n< uz)[lti (Indm —y — 2M +8D) 5 +0(@);. (8)
The In*(- ¢%/1?) represents the explicit beginning of the renormalization-group improvement of Fig.
1(a). For C,=0, Cr=1, and N,;=0, this expression reproduces a result due to Rosner for quantum
electrodynamics (QED).*°

In both the MS and the MS schemes, the p dependence, and hence the scaling properties of the re-

normalized II(-¢?), are completely determined by C,(g?), the coefficient of the simple pole of 11,. In
either scheme,

2 2 2y= 2 (.20 (o2
(150 + 8805z |- 0= 35 (52 Cu(e)] ©)
From our calculation and well-known QED results,!! we have
g2 B g% \?
Ce)=-3-4C: (45 )+ Co[B+ 201 -aD) [(£5) v 000, (10)

Equation (9) is readily solved in terms of the running coupling constant. If we assume that we may ob-
tain R by taking the discontinuity of II,'* we obtain, specializing to SU(3),

wis) ((1:35 —0.442M)(£5;(§Z>2MS

R=2,Q7 1+—§(—2+

2 (11)
(1.98 - o.115Nf)<9-§7f—5—)> S
Thus just as in deep-inelastic and photon-photon l
scattering the perturbation theory appears more cent analyses, including higher-order QCD cor-
satisfactory in the MS than in the MS scheme.!? rections, of deep-inelastic scattering data.* Then,
In order to confront theory with the experimen- in order of decreasing importance, one must

tal value of R, several effects must be taken into consider the following:
account. To illustrate their relative importance, (1) The lowest-order result. With the presently
we work in the MS scheme, taking Vs =6 GeV, A accepted four quarks the contribution is R, =10/3.
=0.5 GeV. This choice of A is motivated by re- (2) The first QCD correction. Using a,° one

670



VoLUME 43, NUMBER 10

PHYSICAL REVIEW LETTERS

3 SEPTEMBER 1979

gets a contribution to R, R, =0.32.

(3) QED radiative corrections.'* In the experi-
mental analysis of R, account is taken only of ra-
diation from the initial electrons and the electron-
loop contribution to vacuum polarization. There
fore, to the theoretical prediction of R we must
add vacuum polarization contributions from mu-
ons, taus, and hadrons, along with radiation
from the quark lines. The last effect is negligi-
ble, but the vacuum polarization terms give R,
=0.13.

(4) Mass corrections. The first QCD correc-
tion is computed in the zero-mass limit, and
while this approximation is satisfactory for «,

d, and s quarks, it is not valid for the charmed
quark. Following the treatment of Poggio, Quinn,
and Weinberg,? The effect of taking the charmed-
quark mass to be 1.5 GeV is R,=.088.

(5) Higher-order QCD corrections. In MS, al-
though the correction due to the graphs of Fig.
1(b) is 0.047, inclusion of the effect of the two-
loop B function cancels the effect so that R,
=-0,029.

The smallness of R, relative to the other con-
tributions to R is the most important feature of
our calculation; higher-order QCD corrections
are small and make no qualitative change in the
results obtained from the first-order analysis.'®
Adding the above corrections gives R =3.84 at s
=36 GeV?, to be compared with the experimental
value'® R=4.17+ 0.09+ 0.42, where the first error
is statistical and the second systematic. Clearly
the data do not rule out the existence of an addi-
tional charge-% quark or spinless boson, but the
large systematic error prohibits a definite con-
clusion. The use of smearing techniques and
dispersion relations is currently under study,
but we do not expect that our conclusions will be
qualitatively modified.
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