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We consider a superposition of string configurations as a meson trial wave function in
quantum chromodynamics and regard its amplitude as a variational parameter. By min-
imizing the meson energy we obtain a Schrodinger equation and an effective Hamiltonian
for the amplitude.

At present, quantum chromodynamics (QCD)
appears to be the most promising candidate theo-
ry of the strong interactions. ' It offers an attrac-
tive possibility of achieving quark confinement at
the same time with asymptotic freedom.

So far, QCD has been extensively studied in its
two extreme regimes: weak-coupling regime and
strong-coupling regime. The weak-coupling ex-
pansion is, of course, suited to the study of the
relativistic high-energy behavior of the theory
based on asymptotic freedom and is also used to
describe vacuum tunneling phenomena. On the
other hand, the strong-coupling dynamics has to
do with the static long-distance properties of
QCD.

So far as the confining aspect of the theory is
concerned, a beautiful simplicity has been ob-
served in the lattice formulation of strong-cou-
pling theory. "Here, unlike the weak-coupling
treatment, we can deal only with gauge-invariant
excitations, mesons and baryons, and can set up
a simple perturbation scheme to compute the
hadron spectrum. It is also widely known that in
this formulation we encounter stringlike objects
composed of electric flux lines reminiscent of
those in the string model of hadrons. Up to now
lower-order perturbation-theory calculations
have been done and some guesses made on the
behavior of the theory in the continuum limit.

In this paper we want to propose a new ap-
proach to strong-coupling QCD based on a varia-
tional technique. We consider a superposition of
strings in various configurations as a meson trial
wave function in QCD and regard its amplitude,
a functional of the string, as a variational param-
eter. By minimizing the meson energy we obtain
an effective Hamiltonian and a Schrodinger equa-
tion for the amplitude.

Our effective Hamiltonian acting on the string
functional is written in terms of string variables
defined in one spatial dimension. Thus Our varia-
tional technique amounts to a transformation of
the original gauge-field variables in three space
dimensions to one-dimensional string variables.

By this transformation the kinetic and potential
terms in the original Hamiltonian are mapped into
potential and kinetic terms in the effective Hamil-
tonian and hence this is a kind of duality trans-
formation. 4

Let us start by defining notations in this paper.
In order to avoid ultraviolet problems we work
with the Hamiltonian formulation of SU(2) lattice
gauge theory' where

E (x), a, i= I, 2, 3,

are the electric field, the fundamental phase fac-
tor associated with a path I' starting from x,
and ending at x„and the Hamiltonian, respective-
ly. Tr U(y) is the trace of a group element U(y)
for a plaquette y and it is real for SU(2); a is
the lattice constant; U(I') is the creation opera-
tor of an electric flux line when we define a vacu-
um annihilated by the electric field,

En fact, by using a commutation relation we ob-
tain

(2)

where t means the tangential direction to the
string at x,. Then by introducing quark fields we
construct a state

q t(x,) U( I")((((x,) i 0),

which is interpreted as a gauge-invariant meson
state with an electric flux line at I". In this paper
we only consider infinitely massive quarks and
treat them as external sources.

We now define our meson trial wave function
to be a linear superposition of these states. De-
noting the amplitude of the occurrence of the
string configuration I'by a functional f[I"], it is
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given by'

I ~&=g —,
' w2 f[r]q'(x, ) U,/, [r]q(x.) I 0). (3)

In Eq. (3) we restrict ourselves to strings with I
= —,

' representation and do not consider possible
internal excitations of the string corresponding to

higher representations. Also we restrict the sum
over I to those paths which are not self-inter-
secting and have no disconnected loops. We re-
gard f[I'] to be our variational functional. The
normalization of the meson wave function is com-
puted by summing over the internal states of
quarks,

&~l~&=ErZr ~ 2'f *[r']f(r) &0 I Tr U (r') U(r) I 0&=Fr If(&')
I

'= 1,
where we have used

(0 I Tr Ut( r') U( r) I 0)= 25r r . (5)

Now let us compute the expectation value of the Hamiltonian in our meson trial wave function.
effect of the electric field is easy to compute. Using Eq. (2) we obtain

&Ml&E (x) IM&=(c./~)Erf[r]If [r]I'. (8)

Here C~= ~ is the Casimir operator of SU(2) and l[r] is the length of the string I'. Thus the expection
value of the electric field term in the Hamiltonian is proportional to the average length of the string in
the meson state.

The expectation value of the magnetic field term,

&~IX,»U(r) I
M&= 2Z r Er P, f+[r ']f[r] &OI Tr(U'[r'] [Tr U(y)] U[r]}I O&,

is computed as follows: First we notice that every plaquette y which does not overlap with F gives a
vanishing contribution,

&0 I Tr ( U ~[r ][Tr U(y) ] U[ r]}I o) = o,
ynr=o

(8)

because of Eq. (5). Therefore we need to consider only those plaquettes in Eq. (7) which overlap with
F. Then consider, for example, a situation where a plaquette y=y, y,y, y4 has a common link, say, y,
with F= F,y, F,, Then by the addition of isospin the link y, carries either I=0 or I=1 representation,

1/2(r) ] 1/2( ) 2 Ul/2( I) 6 3r4 2) 2 I/2( r1 2 ~r2ysr@? Sr2)[ l(rl)]Cta ~

The I=O piece corresponds to a deformation of the string I' to F,y,y, y4F, and the I=1 piece corre-
sponds to an internal excitation of the string. The I=1 piece, however, is orthogonal to our trial wave
function

I M) consisting only of /= 2 representation and hence does not contribute to the matrix element.
In general, the action of a plaquette y is written as

[Tr U~, (y) ] U,/, [r]= —,
'

U, /, [ rUr]+ ,'(I = 1 piece), —

where rUy is defined not to include overlapping link(s).
Now we define an operator O(y) by

O(r) g[r]=g [r Uy]

for any functional g of I'. O(y) is a. unita, ry operator in the space of functionals. Then we obtain

&~IZr»U(y) IM&= 2&~IX,[»U(r)+»U'(y)] IM&

= -,'Pr grgr'P*[r 'Jf [r] &Ol Tr U [I"]Tr U[rUy]+ Tr U[r'Uy]Tr U[I'J
I 0)}

= -,'p, p, '((of)*[I]f[r]+f*[r](of)[r]]
=-,'prp, (f*[r][o(r)+o'(r)]fir]}.

P' means the summation over overlapping y's. Collecting together formulas (6), (8), and (11), we
find that the expectation value of the Hamiltonian is given by

(9a)

(1o)
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Then by minimizing the meson energy by varying f[r] under the normalization condition Eq. (4), we
obtain the effective Hamiltonian for the string functional. :

H fff I rl = &(c,g'/2~')&[ rl —(1/~g') g, '
—,
' [o(y) + o '(y) ) )f[rl =sf[ r) .

This is the basic result of this paper.
Now in order to discuss the physical content of

this Hamiltonian, it is convenient to introduce an
approximation by replacing a zigzagging line I'
by a smooth curve x(s) and to rewrite our effec-
tive Hamiltonian taking the naive continuum limit;
the parameter s is the proper distance along the
string. Let us first introduce an orthonormal set
of functions f y„(v)j on the string and expand the
string coordinate

x(a) =g„q „(o)x„, (i4)

here 0 is an arbitrary parametrization of the
path. Next we define the functional derivative'

6 9 5 do
Sx(o) „ " &x„ ' sx(s) ds sx(o) '

which has the commutation relation

where i is the direction of the deformation of the
~

x, (o). . .)
= —e,.„S(o—o').' R,.(o'

For a small lattice constant a, the operator O(y)
can be expressed approximately by

a4 52-1 a'(y ='"
s ()' 2 s ()''

!string caused by the action of y.
The kinetic energy term of the string is then re-

written as
4 g2

Q' —,
' [o(y) + ot(y)]= — ds 1+—,(18)a 2 sx,.(s)'

and H, ff now takes the form

g2 2 a Q2
Heff — C2 -

2 2 2 dS ——, dS 2. 192g' ~'g' g' Sx(s)'

In the above we have accomplished the following:
(1) We have traded our original field variables
E, Ufor string variables x(s), 5/sx(s) and re-
placed the original Schrodinger problem by the
new Schrodinger problem Eq. (19). (2) The first
term in H, ff corresponds to the electric field
term and the second term to the magnetic field
term in the original Hamiltonian. Hence the role
of the kinetic and potential terms has been inter-
changed. Thus our transformation

A, E -x, 5/sx'

is a kind of duality transformation. 4

If we introduce an arbitrary parameter a in
place of s and denote q&(o) =g'x[s(o) j/a ', H, f f is
further rewritten as

+ef f do — ———
4 +—4 77 ——7T ~ —— —

~ (20)

m is canonical conjugate to p. This is now a non-
linear field theory in one space dimension.

It is quite interesting that we have wound up
with an effective Hamiltonian defined in one spa-
tial dimension although we started with a gauge
theory in three spatial dimensions. This was
made possible because we restricted outselves
to gauge-invariant states of the theory which are
always composed of a collection of strings. Thus
it appears that the three-dimensional gauge theo-
ry may be mapped into an effective one-dimen-
sional theory in the physical sector of its Hilbert
space.

In this paper we have made some approxima-
tions in our variational wave functional, i.e., ex-
clusion of disconnected loops and internal excita-
tions of strings, which simplified subsequent cal-

culations. These are approximations appropriate
to QCD in its strong-coupling domain. However,
even with these approximations, our effective
Hamiltonian encompasses the sum of an infinite
number of diagrams having the topology of a sin-
gle self-nonintersecting string connecting quark
and antiquark. Thus our H, ff incorporates the
strong-coupling dynamics of QCD in an essential
ly nonperturbative manner. When we decrease
the strength of the coupling constant, diagrams
with more complicated topologies will become
important. The variational technique, however,
would also give a reliable approximation to QCD
so far as we provide enough relevant string con-
figurations in our trial wave function. We plan
to report on this problem in a future publication.
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Nonleading quantum chromodynamic corrections to e+e annihilation into hadrons are
computed. Comparison with experiment is briefly discussed.

In quantum chromodynamics (QCD), processes
which probe the structure of hadrons at short
distances may be investigated with use of pertur-
bation theory and the renormalization group. '
The photon vacuum polarization tensor,

lln, (q) = j(q'gq qqq, )—II (-q')

for q' large and spacelike, is one such short-
distance probe. II(-q') and R=o(e+e -hadrons)/
v(e'e - p'p, ) can be related through dispersion
relations or smearing methods. ' In regions be-
tween new quark thresholds, where the cross sec-
tion is reasonably smooth, one may hope to ob-
tain R directly from the discontinuity of II(—q').

The leading QCD corrections to II (- qs) are well

known, ' and arise from the renormalization-group
improvement of the graphs of Fig. 1(a). In this
paper we report a calculation of II (-q') through
order g, arising from the graphs of Fig. 1(b).
This calculation is necessary in order to deter-
mine if higher-order corrections are small, and

in order that one may compare the strong coup-
ling constant determined from measurement of
R with that measured in other processes, such
as deep-inelastic scattering. To address the
first issue we will employ two renormalization
schemes, the minimal scheme (MS) of 't Hooft

and a modified scheme (MS) due to Bardeen etal. ~

This latter scheme has been shown to lead to a
more satisfactory perturbation series than MS

in deep-inelastic and photon-photon scattering,
and the same will be seen to be true here.

The problem of determining the strong-coup-
ling constant can be understood in terms of the

(b)

FIG. 1. (a) Graphs whose discontinuity gives A to or-
der g . (b) Graphs whose discontinuity gives A to order
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