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In the presence of long-time memory effects, Fick’s law must be modified by replac-
ing the diffusion coefficient by a convolution over time of the velocity autocorrelation
function. This leads to a convergent Chapman-Enskog expansion in a fluid provided the
proper reference frame is taken in the presence of hydrodynamic motion.

After the discovery that the velocity autocorre-
lation of a particle in a fluid decays nonexponen-
tially at long times,' it was recognized that the
coefficients in the Chapman-Enskog expansion
diverge.? The cause for the divergence of these
coefficients, called the Burnett coefficients, is
that the distribution for the positions of particles
(measured relative to their root-mean-square
displacement) as a function of time, does not ap-
proach its long-time limit as a Gaussian. The
long persistent correlations lead to the non-
Gaussian approach and also necessarily introduce
nonlocality in time (memory) into the description
of transport theory.

Fick’s law, consistent with a Markovian ran-
dom process, implies that the distribution func-
tion is Gaussian for all times. The actual non-
Markovian nature of the process is here shown
by molecular-dynamics simulation to correspond
to a random walk, where after each step the par-
ticle waits for a time as sampled from a waiting-
time distribution® before making the next move.
The major physical consequence of the validity
of this stochastic process is that the higher-or-
der correlations decay sufficiently fast so they
can be expressed, as they approach their long-
time limit, in terms of the lowest-order one,

namely, the velocity autocorrelation function,
or, equivalently, the waiting-time distribution.
Fick’s law is valid only in the infinite-time lim
it and only if the distribution is Gaussian in that
limit. The latter requirement is by no means
assured since in many cases the diffusion coeffi-
cient is zero and in at least one known nontrivial
case, the two-dimensional fluid,' divergent. If
we restrict discussion for the present to a well-
defined diffusion coefficient, D, that is, an in-
tegrable velocity autocorrelation function, the
first Burnett coefficient, B, is defined® through
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where f(x,¢) is the distribution function along the
x direction. The coefficients D, B, and further
ones can be expressed in terms of infinite-time
limits of the rate of growth of successive cumu-
lants of the distribution function.® Depending on
the exponent of the power-law decay of the veloci-
ty autocorrelation function, either B or higher
ones can be shown to diverge.? The power-law
decay at long times, resulting from the long-
term correlations, leads to a distribution that is
far from Gaussian at finite but long time, as
shown in Fig. 1.
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FIG. 1. The distribution for the overlapping-disk
Lorentz gas relative to a Gaussian distribution of the
same root-mean-square width, (x%!/2, as a function
of x/ (x2) /2 after 100 mean collision times at a den-
sity NR%/A of 0.20. The molecular-dynamics results
are given by the circles and the solid line is the solu-
tion of Eq. (2). The difference between these two re-
sults is given by the triangles and compared to the
correction obtained by treating the & term (replaced
numerically by D,) as a perturbation in Eq. (1). The
vertical lines indicate estimated uncertainties.

The physical causes of the memory effects dif-
fer in different situations. In fluids persistence
has been shown to be due to slowly decaying hy-
drodynamic fields.! Inthe Lorentz gas, where
a particle moves through stationary scatterers,
the hydrodynamic effects are absent, and the
slow decay is related to the higher-than-random
probability of the particle returning to its origin.®
If we restrict discussion for the moment to the
easier to deal with Lorentz gas, the simplest
way to modify Fick’s law to take memory into ac-
count is
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where the kernel, ¢,, relates the distribution at
time ¢/ to the rate of change of the distribution at
time ¢{. The integration over ¢’ sums all the past
effects on the distribution up to the present time,
t. If ¢, is short range, that is, there are no long-
term memory effects, then the above equation
reduces to Fick’s law. ¢, itself is determined by
the requirement that the second moment corre-
sponding to the physical situation be reproduced.
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Thus,

d(x t)) 2]

where (x2 t)>=f_wx2f(x, t)dx, and @,(t) is identi-
fied as the velocity autocorrelation function. Eq-
uation (3) is obtained by multiplying Eq. (2) by x2
and integrating over all space. The right-hand
side is integrated by parts,

Given the asymptotic behavior of the velocity
autocorrelation function and the value of the dif-
fusion coefficient, Eq. (2) can be solved at long
times by expanding the distribution function about
the Gaussian limit. The resulting distribution is
plotted in Fig. 1 in a way to show the large devia-
tion from Gaussian behavior at long times, Thus,
if the distribution is Gaussian or Fick’s law ap-
plies, the results will lie on the horizontal axis.
The deviations of the molecular-dynamics results
from Eq. (2), as seen in Fig. 1, are small and
are well accounted for by the higher-order cor-
rection to Eq. (2),
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where ¢, is a higher-order memory function,
determined by taking the fourth moment of Eq.
(4) and integrating over space:

t
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where D(t)=}0 at’ g,(t').

If there are no long-term correlations, the
last term in Eq. (5) can be written as a product,
and the expression reduces to the conventional
Burnett correlation function. For the two-di-
mensional Lorentz gas the conventional Burnett
coefficient diverges,® while in the new formula-
tion, the integral ofm Eq. (5) leads to convergent
coefficients, D4=f0 dt ¢,(t), as given in Table I,
If these D, coefficients are used to correct the
distribution function, the small deviations from
Eq. (2) are accounted for, as shown in Fig. 1. As
an approximation sufficiently precise for present
purposes, the correction due to the D, term was
calculated as a perturbation about a Gaussian
distribution rather than the actual one resulting
from the solution of Eq. (2).

It seems physically plausible that the four-point
correlation function involved in ¢, decays at
large times sufficiently fast that it can be ex-
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TABLE I. The diffusion coefficient, D, and the newly
defined Burnett coefficient, D,, for the overlapping-
disk Lorentz gas.

(N/AR?? D/Dg ® D,/Dg2° D,/DA2¢
0.318 0.04 0.07 0.7,
0.200 0.38 0.26 0.26,
0.143 0.52 0.30 0.22,
0.050 0.81 0.50 0.23,
0.020 0.92 0.57 0.23,

2The density of disk scatterers of radius R.

Dg = 30%/8I is the Enskog value of the diffusion coef-
ficient, where v? is the square of the particle velocity
and I'is the collision rate. The uncertainty in the re-
sults is + 0.02.

cThe uncertainly in the results in + 0.04.

) is the mean free path. The error in the last fig-
ure is indicated by the subscript.

pressed in terms of the two-point correlation
function, ¢,. A successful test of this hypothesis
is given in Fig, 2, where it is shown that ¢, de-
cays at long times with the same power law as
¢,, and the proportionality constant is given by
@4(t) =D,,(¢)/D. If the same argument can be
made about all the higher coefficients, as is to be
expected, the Chapman-Enskog expansion is re-
placed by
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The stochastic process corresponding to Eq. (6)
involves a random walk where between each step
the particle is delayed for a time as sampled
from a waiting distribution.” The delay can be
interpreted physically as the time required for
the particle to escape from the various nearly
trapping regions. The waiting-time distribution,
¥(t), is uniquely determined by the requirement
that the second moment of the distribution is re-
produced for all time, This leads to

v(8)= @/ [ at'D(t -t [6(t)=v(t)], (1)

where (%) is the second moment of the step-size
distribution. The solution of Eq. (7) leads to neg-
ative, and thus physically unacceptable, values

for the waiting distribution at intermediate times.”

It is only at long times that the higher-order cor-
relations are decomposable, the waiting distribu-
tion is positive, and Eq. (2) makes sense. In this
time regime Eq. (7) leads to divergent Burnett

coefficients for the walk. Furthermore, the sto-
chastic model yields expressions for D,, in terms
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FIG. 2. (a) The Burnett correlation function, ¢,,
normalized by D2, for the overlapping-disk Lorentz
gas at NR%/A of 0.20 as a function of mean collision
time. The molecular-dynamics results (circles) are
compared to the prediction, ¢,(t) =D,;¢,(t)/D, given by
the dashed line. (b) As (a) except for a fluid of spheres
(Ref. 8) at V/Vy= 3, and the transformation to ¢ . The
upper and lower dashed lines reflect the uncertainty in
the values of Dy, Dy, and D' .

of the (22) moments of the step-size distribution:
D,, /D =2(1*")/(1*)(2n)!. The values of D, found
are consistent with a Gaussian step-size distribu-
tion whose second moment, (I2), is the square of
the mean free path, A%, Thus, a quantitative the-
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ory for the Burnett coefficient and the tail of the
higher-order correlation functions has been es-
tablished, for example, D,/D=2X%/4 (see Table I).

The integral of Eq. (5) for three-dimensional
fluids, D,, was found to be divergent. This is
because, in a fluid, there are additional long-per-
sisting correlations connected with hydrodynamic
flows, particularly the vortex flow, which affect
the distribution at long times. In view of this a
speculative derivation can be made: In the limit
of small fluid velocity, the vorticity obeys a dif-
fusion type of equation, with the diffusion con-
stant replaced by the kinematic viscosity, v. The
combined effect of diffusion and vortex flow leads
in the long-time limit to a Gaussian distribution,’
p(x,?), in a laboratory coordinate system, pro-
portional to exp(—x2/4Dt) exp(—x2/4vt), or a
Gaussian with an effective diffusion constant

"= Dy/(D+ v). In the framework of relative
positions of a particle, by which diffusion coef-
ficients are measured, the motion of the coor-
dinate system due to the hydrodynamic vortex
flow must be removed by

f(x,t)=f_:dx’p(x -x',t)(x’',t),

where k(x’,t) is the distribution in the vortex-
moving coordinate system and f(x,t) is the dis-
tribution resulting from diffusion, equivalent to
the one used in the Lorentz gas, but including al-
so the effect of the vortex mode on the relative
displacements of particles. D, formed from
f(x,t) diverges® in the fluid because of the vor-
tex-motion-displaced coordinate system and
hence D,, must be formed from k(x,¢). The sec-
ond moments of the two distributions differ:
(x%),=(x®) - 2D't, leading to an effective diffusion
coefficient in the vortex moving coordinate sys-
tem of D,=D - D’ and a Burnett correlation func-
tion ¢ ,(t)=¢,(¢) - D't@,(t). Subtraction of these
terms in the second and fourth moments leads to
convergent Burnett coefficients which have the
expected asymptotic behavior, that is, ¢,(t)
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=D,, ¥,,(t)/D,, as shown in Fig. 2, where D, is
the time integral of ¢,,. Thus, once the proper
coordinate system is used in a fluid, the highest-
order correlation function can again be shown to
decay fast enough so that, asymptotically, only
the second-order correlation function dominates.
The distribution can then be obtained again from
Eq. (6), which, for aslowly decaying autocorre-
lation function, replaces the previously divergent
Chapman-Enskog expansion.
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