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er to the zero of t' and the data analysis will have
accompanying uncertainties.
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Using Monte Carlo techniques, we study pure SU(2) gauge fields in four and five space-
time dimensions and a compact SO(2) gauge field in four dimensions. Ultraviolet di-
vergences are regulated with Wilson' s lattice prescription. Both SU(2) in five dimen-
sions and SO(2) in four dimensions show clear phase transitions between the confining
regime at strong coupling and a spin-wave phase at weak coupling. No phase ch~~&e
is seen for the four-dimensional SU(2) theory.

The standard theory of hadronic interactions is
based on quarks interacting with non-Abelian
gauge fields. The viability of this picture depends
on the conjectured phenomenon of confinement,
wherein the only physically observable particles
are invariant under the gauge group. Thus far,
the only demonstration of this property is in the
strong-coupling limit and with a space-time lat-
tice regulating ultraviolet divergences. ' Approx-
imate renormalization-group arguments' suggest
that four space-time dimensions represent a cri-
ical case where confinement persists for all cou-
plings when the gauge group is non-Abelian. In

contrast, Abelian groups should exhibit a phase
transition to a nonconfining weak-coupling phase
containing massless gauge bosons. Thus arises

the conjecture that in our four-dimensional (4D)
world, the lattice formulation of electrodynamics
can avoid confinement of electrons, while the con-
tinuum limit of the strong-interaction gauge theo-
ry can exhibit asymptotic freedom, a vanishing
coupling at short distances.

Recent Monte Carlo results have given mixed
support for these arguments. For the four-di-
mensional gauge-invariant Ising model, the ob-
served transition is first order, contrary to the
approximate renormalization-group prediction of
a second-order transition analogous to that in the
conventional two-dimensional Ising model. ' How-
ever, for Z„with n~ 5 and SO(2) symmetries, the
predicted similarities between the four-dimen-
sional gauge models and the two-dimensional
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spin systems are confirmed.
In this note I report results on Monte Carlo

studies of SU(2) gauge theory. To show the crit-
ical nature of four dimensions I ran these simu-
lations for both four- and five-dimensional lat-
tices, I also make comparisons with the Abelian
group SO(2) [isomorphic to U(l)j. l work with

pure gauge fields on the assumption that the addi-
tion of a few fermion species represents a per-
turbation that will not spoil confinement. Al-
though the group of physical interest is SU(3), I
study SU(2) because of its simpler structure. As
confinement is connected with disorder in the
lattice formulation, and as adding more degrees
of freedom should increase disorder, confine-
ment with SU(2) gauge fields should imply con-
finement with SU(3).

The system is formulated on a hypercubical lat-
tice. Associated with the link joining any pair of
nearest-neighbor sites i and j is an element U, ,
of the gauge group (i and j label sites and should
not be confused with the implicit matrix indices
on the group elements). The wave function of a
particle traversing the respective link undergoes
an internal-symmetry rotation corresponding to
U„.. The reverse path gives the conjugate rota-
tion

The Monte Carlo algorithm consists of succes-
sively touching a heat bath to each link of the lat-
tice while holding fixed the group elements on
the remaining links. Repeating this procedure
will eventually produce a sequence of states
which simulates an ensemble of such systems in
thermal equilibrium. ' Green's functions for the
quantum theory follow from correlation functions
in the states of the ensemble.

Beginning in some initial configuration, we
pass through the entire lattice varying one link
at a time. At each link's turn, a new group ele-
ment g is selected to occupy that position. This
choice is made randomly from the entire gauge
group with weighting proportional to the Boltz-
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where the inverse is in the group sense. The
quantum theory is defined via the path integral
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where the integral includes all links and uses the
invariant group measure. The action is that de-
fined by Wilson,
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where the sum extends over all elementary
squares or "plaquettes" G and
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Here i, j, 0, and l are some labeling of the sites
going around the square O. The normalization is
such that for the groups SU(2) and SO(2) any plaqu-
ette contributes a number between zero and two
to the action. As shown by Wilson, ' this action
reduces in the classical continuum limit to the
usual gauge-theory action with P proportional to
the inverse square of the coupling constant.

Equation (l) is formally identical to the parti-
tion function of a statistical mechanical system
with Hamiltonian S and at inverse temperature P.
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FIG. 1. The average plaquette as a function of P as

obtained on cooling and heating the gauge systems with
(a) SU(2) in five dimensions, (b) SU(2) in four dimen-
sions, and {c) SU{2) in four dimensions. Crosses,
heating; circles, cooling.
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mann factor

B(g) = exp[- pS(g)], (5)

(6)P =(S~).
This quantity is proportional to the internal ener-
gy of the statistical system and runs between zero
and one as P decreases from infinity to zero

In Fig. 1 I show the results of a thermal cycle
on the models. Each point is obtained from either
higher or lower temperature by iterating the
Monte Carlo procedure until no net trend in P is

where S(g) is the action evaluated with the given
link having group element g and all other links
fixed with their previous values. The old value
for the current link plays no direct role in this
procedure. In what follows an iteration is defined
as one application of this algorithm to each link
in the lattice.

For the four-dimensional models we use a 5x 5
x 5~ 5 lattice while for the five-dimensional simu-
lation we work on a 4&&4&&4X4&&4 lattice. To min-
imize surface effects we impose periodic bound-
ary conditions. As an order parameter we use
the average action per plaquette,

p, =0.987+0.023, SO(2) in 4D,

P, = 1.642+ 0.015, SU(2) in 5D.

To investigate whether the transitions are of
first or higher order, I made extended runs at

(8)

observed over six iterations. Plotted is the aver-
age value of P over these six iterations. The
heating runs are initiated with a totally ordered
lattice while the cooling runs start with all link
variables chosen randomly. Note that the four-
dimensional SO(2) and the five-dimensional SU(2)
models show clear hysteresis effects indicative
of phase transitions. The four-dimensional SU(2)
model shows no similar gross structure, although
convergence appears to be slightly reduced in the
region 2.2 s ps 2.5. I further discuss this region
below.

In order to quote critical temperatures for the
observed transitions, I select a value P, for P
in the middle of the hysteresis loops and then
iterate while adjusting P until P fluctuates around
P, . Choosing P, =0.52 for SU(2) in five dimen-
sions and P, =0.4 for SO(2) in four dimensions,
I obtain

0.6—

0.5—

0.4 — +

I I I I

RANDOM .START
~ ~~ ~ l ~~ ~ ~ ~ ~~ 0 ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~

1 ~ ~
0 0

+++ ++ +++ +++ ++++ ~ ++++++++ +++++++++
+ +

ORDERED START

SU (23
5 DIMENSIONS

P= I.64

4 LATT I CE

0.5—

P 0.4—

0.3—

~ ~ RANDOM START
~ ~

~ ~ ~ ~ ~

+++ ~++ +»+++ ~ 4+~++ ~++ i f+ 0 y+ g f t &+ g ~ ~ ~ ~ ~ ~ y +

ORDERED START

Su (23.
4 DIMENSIONS

P =2.35
5 LATTICE

0,5—

04—

0.3—

RAN DOM START

~ ~
~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ ~ '

~ ~ ~ 1 ~
++ + + + ++++++ + ++ ++ + + + ++ +++ + + + +

ORDERED START

so (23
4 DIMENSIONS

p =l.o
54 LATTI CE

I

IO

I

20
I

30
I

40
I TERAT I ON 8

FIG. 2. The average plaquette as a function of number of iterations at a fixed P.
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P = 1-—,'P+O(P') for SO(2),

P = 1-—,'P+O(P') for SU(2).

(9)

(10)

The large-P behavior can be estimated by keeping
only those terms in the action which are quadratic
in parameters describing the group manifold.
This yields a Gaussian path integral and implies

where n is the number of group generators and d

the critical temperatures with both ordered and
disordered starts. In Fig. 2 we see that for SU(2)
in five dimensions the two runs stabilize at differ-
ent values, indicative of a first-order transition.
In contrast, for SO(2) in four dimensions these
runs show large fluctuations and continue to con-
verge slowly, suggesting a higher-order transi-
tion.

In Fig. 2 I also show the results of similar
runs with the four-dimensional SU(2) model at
P =2.35. This corresponds to a temperature in
the middle of the slow-convergence region alluded
to above. The two runs converge after about
thirty iterations, while fluctuations are consider-
ably controlled relative to those seen in the SO(2)
model. I feel that the reduced convergence in this
region is not evidence for a phase transition, but
rather a consequence of the critical nature of
four dimensions.

At low P (high temperature) the points follow
the strong-coupling limit

is the dimensionality of space-time. The func-
tions in Eqs. (9)-(11)are plotted along with the
"data" in Fig. 1. Note that this inverse-P behav-
ior at large P is approached in all the models. I
do not expect any further phase transitions for P
above the onset of this spin-wave behavior.

In conclusion, I have presented Monte Carlo
evidence that the confinement phase of SU(2) lat-
tice gauge theory in four dimensions extends to
all values of coupling. This means that the con-
tinuum limit of this theory simultaneously exhib-
its confinement and asymptotic freedom. Of
course this is not an analytic proof; indeed,
there could exist a subtle transition not readily
observable in the average plaquette. I regard
this as unlikely in the light of the extreme clarity
of the transitions seen with the other models.
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Measurements of the polarization of p' from the decay of &z mesons gives a mean val-
ue of 0.0021 0.0048 for the polarization in the direction (p„&p&) normal to the plane of
decay. The ratio of the normal to the transverse polarization in the c.m. system is 0.0041

0.0092 and the value of Im( is deduced to be 0.012+ 0.026, not significantly different from
Im( ~0.008 expected if the decay were invariant under CP (or T).

The observed breakdown in CP or T invari- is possible that a moderately weak (milliweak)
ance, noted in K~ decays, can be described by CP-nonconserving force acts in second order or
either of two sets of theoretical conjectures. It that a much weaker (superweak) CP-nonconserv-
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