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The form factors of baryon& at large momentum transfer are computed in quantum
ohromodynamics (QCD) to leading order in u~(Q ) and m /Q . Asymptotically, we predict
Q Gu~(Q ) —C[u, (Q )] + and G„"/Gu~ ——V, where P =11-(y)nt~»«and C &0. Form
factors for processes in which the baryon helicity is changed or in which the initial or fi-
nal baryon has helicity greater than 1 are suppressed by factors of m/Q. We also give
QCD predictions for general exclusive scattering processes at large momentum transfer.

In this Letter, we present a new analysis of exclusive processes involving baryons produced at large
transverse momentum. This analysis is an extension of our earlier work on meson form factors in
quantum chromodynamics (QCD)." Here we will describe QCD predictions for the electromagnetic
form factors of baryons, for ratios of form factors, and for transition form factors (e.g. , y*p -A),
all at large Q'. We will also outline the analysis of other large-momentum-transfer exclusive proces-
ses in QCD.

The analysis of baryon form factors in QCD is, in essence, identical to that for mesons. Leading
terms (in 1/Q') involve only the three-quark component of the baryon's wave function (in light-cone
gauge, A+ =0). When the leading logarithms in each order of perturbation theory [i.e. , (n, ln 'Q)"] are
summed, the form factor has the form (-qs=Qs)

&,(Q') =
fo [d~;] f, [dy, ]V'(~;,Q) ~, (~;,y;, Q)e(y;, Q).

Here

Ts = [~sot.(Q')/Q']'f(~;, y;),

where
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Cs = (n„I„+1)/2 n„„,= -', , (b)
FIG. 1. (a) Diagrams constituting T~ for baryon form

factors. The arrows indicate the quark helicity. (b) The
one-gluon interaction in Eq. (3).
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is the minimally connected amplitude for y*Sq —Sq [Fig. 1(a)],' and the symbol for symmetric integra-
tion over the constituents' longitudinal momenta [x;= (k'+k');/(pii'+ p3'); Q';=, x; = 1] is

[dx, ]=—dx, dx, dx, 5(l -g,.x,).
The effective wave function q& (x, , Q) is the three-body qqq Fock-state wave function integrated over
transverse momenta Ik&(')I'& Q'[Cz = (n, ' —I)/2n, =-3]:

Q
2 -(3/2) Cy/3 g 3 d2k (i)

y(x, , Q)= Iln 16~'()'(Q, k,(')) q(x, ,k,"')-=x,x,x, q (x, , Q).
16m

(2)

Only baryon states with L2=0 contribute to the leading power. The factor (lnQ') ' ' & is due to
vertex and fermion self-energy corrections in T~ which are more conveniently associated with 0 rather
than T . As in the meson case, the leading behavior of p for large Q' is determined (A' =0 gauge)

by planar ladder diagrams with the transverse momenta in successive loops strongly ordered, A2

«(ki')2«(ki2)2«. ..«Q'. Three- and four-gluon couplings play no role in this order (other than in

standard vertex renormallzation) since they destroy the strong ordering. Consequently, defining (
=lnln(Q'/A'), we can derive an evolution equation for ql(x, , Q) [relating it to ((l(x, , )l) for some )l. & Q]:

x x,x (SP(x;, Q)/S&+2(C /P)I(x;, Q)]= I [dy;] V(x;, y;)q'(y;, Q), (3)

V(x, ,y, ) = x,x x, Q 8(x,. —y,.)5(x„—y„)
~~'

x X. + x y- —X.

= V(y, ,x,.) [nj —= j(X;,Q)-(('(x, , Q)],

is the interaction between each pair of quarks due to exchange of a single gluon [Fig. 1(b)]. The Kro-
necker delta 5„,„-, is 1 (0) when quark helicities are antiparallel (parallel). As in the meson case, the
infrared singularity at y, =x,. is cancelled because the baryon is a color singlet. (In detail, the cancel-
lation is due to self-energy corrections on the external quark legs. )

Any solution of the evolution equation can be expressed in terms of the eigenfunctions of V:

ql (x„Q)= x,x2x, Q a„j„(x,.) exp(- y„&), [2 C&/p —y„]x,x2x3y„= Vy„.
n=0

The coefficients a„may be determined from the soft wave function:

fn

an ln&& =
0 d+i Vn +i P i&~ ~

(4)

The leading eigenvalues y„and eigenfunctions ql„(x,) for helicity- —, and -—, baryons are given in Table I.
(See Ref. 2 for further details. ) In practical applications it is usually simpler to integrate the evolution
numerically [beginning with p (x;, )l) at $ = Inln()(2/A2)] as opposed to using expansion (4). However, from
Eq. (4) and Table I, we can find the asymptotic wave function for very large Q'.

)([In(Q2/A2)]-2/»
i t ) 1 2 3 ~[in(Q 2/A2)]-2/fl

where C is determined by the qqq wave function at the origin, and h is the total helicity. Since asymp-
totically p is symmetric under interchange of the x,. 's, Fermi statistics demands that the correspond-
ing flavor-helicity wave functions must be completely symmetric under particle exchange —i.e. , iden-
tical to those assumed in the symmetric SU(6) quark model. '

The magnetic form factor G„(Q') for nucleons is given by Zq. (1), where T2 is computed from the
sum of all minimally connected diagrams for y*3q —Sq [see Fig. 1(a)]. We find (k, =k3 = —k2=k)'

(Q2)W2- 3
Z' =64')' ', Q e, T, (x, , y,.)+ (x, —y, )., (6)
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where

r, = T,(1—8)= 1 1 1 1
x,x,(l —x,) y, y, (1 —y, ) x,(1 —x,)' y, (1 —y, )' '

1 1
x]x3(l -x,) y, y, (l -y, )

and e, is the electromagnetic charge (in units of e) of particle j, Convoluting with wave function (4),
we obtain the QCD prediction for the large-Q' behavior of G„:

~ 3(Q3) Q3 -)n -
Ym

Gs(Q ) = '
4 Q b„ ln 3 [1+O(o.,(Q3), m/Q)j

n,m

For very large Q', the n =m=0 term dominates and we find

32~3 ~ 3(Q3) Q3 -4/35
G, (Q')"

9
C' ' 4»A3 (s3-s ii),

(7)

(8)

where e
~~ (e q) is the mean total charge of quarks

with helicity parallel (antiparallel) to the nucle-
on's helicity (in the fully symmetric flavor-hel-
icity wave functions). For protons and neutrons
we have

3 ~

The constants C are generally unknown for bary-
ons; however, by isospin symmetry C~ = C„and
thus QCD predicts the ratio of form factors as

2 ~ oo 0
0

G "(Q')/G '(Q')-- '
This is remarkably close to the measured ratio
G„"/G„~=—p„/(1+ p, ~) = —0.685, which remains
roughly constant through the range of data (0&Q'
&8 GeV'). Notice also that G„ is positive and

G„negative in the limit (8), which is consistent
with data [e.g. , G„~& 0 as Q'- ~ wouM imply a

I

zero in the form factor at some finite Q', since
G„~(0)=— 1+p~ &0]. Both the sign and magnitude
of the ratio (9) are nontrivial consequences of
QCD; they depend upon the detailed behavior of

Ts and y(x, ,Q) as Q3-~. For comparison, note
that in a theory with scalar or pseudoscalar glu-
ons, diagrams in which the struck quark has anti-
parallel helicity vanish. Thus scalar QCD pre-
dicts a ratio G„"/Gs -e~t"/e3 =- —', .

The predictions for G„(Q') in the subasymptotic
domain depend on the n, m&0 terms in Eqs. (4)
and (7). To indicate the extent of this dependence,
we plot Q G„~(Q') in Fig. 2(a) beginning with two
very different Ansatze for the low-energy wave
function: y(x, , X) sharply peaked at x,. = —,

' for
small &, and p (x, ,&) ~x,x,x, for all A. (i.e. , no
evolution). Primarily because of the factors of

a, in Eq. (6), both theoretical curves fall faster

TABLE 1. Eigensolutions of the evolution equation (3) for Ihl ~ m(y"') and

I&I = 3(p"') baryons (see Ref. 5). A procedure for systematically deter-
m&&i&~ all y„ is given in Ref. 2.

oo'"' ~~o
(n)

t4t
&n

—I 120
2/3 1260

I 420
5/3 756
7/3 34020
5/2 1944

0 120
3/2 420
3/2 420
V/3 5V60

17/6 3024
17/6 34020

V'„= (25„Cs+ 3Cp)/P

I

I
8

-4/3
14/3

3
—v/2 —v/2
—7/2 —7/2

I I

7/2
8

V/2

2
-4/3

p =N/Pa ("~x 'x/&n= &a;
t 4

8
4/3

14/3

7/2
2

4/3
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than the data~though not as fast as a full power
of 1/Q'. Nonleading terms could well be impor-
tant for Q'( 25 GeV', as is illustrated in Fig. 2(b)
where the curves from Fig. 2(a) are multiplied by

FIG. 2. (a} QCD predictions ("leading log" approxima-
tion) for the proton's magnetic form factor under two
different Ansatse for the low-energy (A, =4 GeV ) wave
function y fyccx~x2x3 corresponds to Eq. (7) with C 0.26
GeV ]. A large QCD scale parameter (A ~l GeV ) is
used here since, effectively, q is shared by three con-
stituents, thereby reducing the momentum controlling
scaling violations. The data are from Ref. 6. (b) The
theoretical curves in Fig. 2(a) are multiplied by 1 —1.15
&0.,{Q ) and renormalized to indicate the potential sig-
nificance of nonleading (but calculable) corrections.
The solid curve can also be obtained directly from Kq.
(7) by choosing a scale parameter A = 0.000 15 GeV
and C=1.4 GeV2.

]. —]..].5a,(Q') and renormalized to fit the data. '
These corrections can and in fact must be com-
puted before a definitive comparison with the
data is made. The ratio of neutron to proton form
factors, which is perhaps less sensitive to such
corrections, is roughly independent (i.e. , to + 10%
in this range of Q') of the choice of wave function,
at least for wave functions y(x, , Q) having little
oscillatory behavior as the x, are varied. In
scalar QCD, both wave functions result in the
same curve.

As is the case for mesons, form factors for
processes in which the baryon's helicity is changed
(Eh' 0), or in which the initial or final baryon
has h )1, are suppressed by factors of m/Q,
where m is an effective quark mass. (Crossing
and the Lb=0 rule imply that form factors for
particles with opposite helicity dominate for q'
timelike. ) Thus the helicity-flip nucleon form
factor is predicted to fall roughly as F, —mM/Q'.
The reaction e'e —6'6 and eP - eb, are dom-
inated by baryons with I h& I

= &, the e+e cross
section for production of Ihzl = 2 pairs of deltas
with Ihzl=2 and —, is suppressed. Most of these
predictions test the vector nature of the gluon,
e.g. , transitions ep -eh (I ha I

= 2) are not sup-
pressed in scalar QCD.

The techniques outlined above for studying
asymptotic form factors can clearly be extended
to the computation of any exclusive process in-
volving large transverse momentum exchange be-
tween color singlets, e.g. , the fixed angle ampli-
tude for the process AB -CD. For P~ sufficiently
large, the wave functions tend to their asymptotic
form and the cross section becomes

(A&-CB)- —*, (ln, ) f(8, „),J

where for mesons y, =0, -4/3P (for Ihl=0, 1)
and for baryons y,. = —2/3P, —2/P (for I k)= 1/2,
3/2). The normalization is, in principle, fixed
by form-factor data. Contributions due to the
pinch singularities discussed by I andshoff" are
suppressed by Sudakov form factors. "' Conse-
quently, these contributions fall faster than any
power of t and can be neglected relative to (10)
except possibly when s» l t I.

It should be emphasized that the specific inte-
gral power Q

' predicted for G„ in Eq. (7) re-
flects both the scale invariance of the internal
quark-quark interactions, and the fact that the
minimal spin-& color-singlet wave function con-
tains three quarks. Thus both the dynamics and

symmetry properties of QCD are directly tested.
Furthermore, the spin dependence of quark-quark
interactions can be tested at short distances by
studying the helicity dependence of elastic and
transition form factors. The fact that the data
for the ratio G„"/G„~ are close to the predicted
asymptotic value appears to be a striking success
for QCD. We also note that it should be possible
to relate the normalization and structure of the
wave function p(x, X) at large distances to wave
functions used in the study of baryon spectroscopy.

This work was supported by the U. S. Depart-
ment of Energy under Contract No. DE-AC03-
76SF00515, and by the National Science Founda, —

tion.
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Since & is symmetric under the interchange x y,
the eigenvalues y„are real and the eigenfunctions are
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It is shown that if the Lagrangian density for a gauge field is taken as an appropriate
nonlinear function of the usual Lagrangian density, there results a simple classical model
of confinement that has nothing to do with the non-Abelian character of the gauge group.
Plane-wave solutions are suppressed, suggesting confinement of the gauge quanta as well.

It is generally felt' that the basic strong inter-
actions among quarks should be mediated by a
non-Abelian "gluon" gauge field, coupled to the
color quantum numbers. Among the desired char-
acteristics of such a theory are (1) renormaliza-
bility, ' (2) asymptotic freedom, ' (3) confinement
of quarks, and (4) confinement of gluons. Of
these, the standard form of quantum chromody-
namics (QCD) provides the first two, and the hope
has been that (3) and (4) may follow from the as
yet unplumbed complications of the theory. I ex-
plore here a possible alternative route to confine-
ment, making use of the arbitrariness in choice
of Lagrangian allowed by the requirements of
Lorentz and gauge invariance. The resulting the-
ory gives strong indications of satisfying (2), (3),
and (4), and a reasonable expectation of satisfy-
ing (1) as well. It will be noticed that the essen-
tial features of the discussion apply equally, in-
deed more readily, to the case of an Abelian
gauge field.

The conventional gauge-invariant Lagrangian

density in the absence of sources is

where

F„8——g~b g„b8+ gb xb (3)

where the form of the function S(l) will be chosen
to accomplish our various ends. The resulting
energy density is

where the repeated index i is summed from 1 to
3. The necessary and sufficient conditions on S(l)
for positive semidefiniteness of the source-free

and by analogy with electrodynamics, we refer to
the polar and axial vector parts of F 8 as E; and

H;, respectively. %e propose the Lagrangian den-
sity
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