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Under the assumption that there are no bound states, a singular linear integral equation
for the scattering wave function is derived whose kernel contains the scattering amplitude
only. The equation is used to obtain a representation of the potential in terms of the scat-
tering amplitude and the wave function. The final result is a three-dimensional analog of
the Marchenko equation.

The problem of reconstructing the potential
that causes a given scattering amplitude, if no
spherical symmetry is assumed, has been at-
tacked a number of times over many years, ' but
it has not been fully solved. I present here a
new result that looks promising enough to be of
interest for its potential usefulness, both in
scattering theory and for possible application
to nonlinear wave equations.

I shall work in three spatial dimensions and
denote the unit vector in the direction of the mo-
mentum by 8. (Note that 0 is not an angle. ) Posi-
tion vectors in R' will be denoted by the letters x
and y, with no special vector notation, and the
inner product will be written x 'y.

The scattering wave function is the unique so-
lution of the integral equation

saa[x-w~

(s)P( ~).

It is well known that under very general condi-
tions on the potential V(y), y„(0, x) is the bound-

ary value of an analytic function of k, regular in
the upper half-plane, except for poles at k =ik„
if —k„' are the bound-state energies. Further-
more, as Ikl -~for Imk ~ 0

y„(0, x)=1+ O(lk I '). (2)

I et us assume that there are no bound states.
Then it follows that y~(0, x) satisfies the "disper-
sion relation"

y (0 x) —1= . dk', y„,(0, «)-1
OQ

(3)

V, (0, «)=V-,(- ,0)x=e,*(-0,«), (4)

in the limit as e -0+.
The function p~(0, x) is the wave function which,

for k &0, is usually called p'. The solution p is
related to it by

Let us write

y, (0, «) =m„(0, «) ~ '"" and the two are connected by the S matrix, or

(1) the scattering amplitude. ' This connection may
be written

y „(-0,x) = y„(0, x)+(k/2mi) fd0'A~*(0, 0')rp, (0', x) e '"e'".

Taking the complex conjugate of (5), using (4), and the fact that (4) implies

A~*(0, 0') = A „(0,0')

show that (5) holds for negative as well as positive values of k.
Let us change k'- —k' in (3) and insert (5). Then the integral becomes

(5)

-„,1-y „,(0, «)
k'+k+i&

"„,1-y (0 x) 1 " dk'k'
k'+k+ i& 2mi .„k'+k+ k

d0'A *(-8 0')y (0' x)e'"'e'"

But since y„,(-0, x) is an analytic function of k' regular in the upper half-plane and it obeys (2), the
first integral vanishes. Therefore (3) becomes'

y„(0, x) =1+ 1 dk'k'
d0'A„.*(-0,0') y, ~(0', x) exp[ik'(0+ ') ~ x]. (7)

If the scattering amplitude is given, this may be regarded as a (singular) integral equation for y. Once
y is determined the potential can be found directly from the Schrodinger equation. 4

Equation (7) may also be used to derive a representation for the potential. The Schrodinger equation
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(8)

where

I„(8,x)-=(s + 2ik 8 v) y, (8, x) = V(x) y„(8,x).

If (7) has a unique solution, then it follows that I"„(8,x) must satisfy (7) with the inhomogeneity 1 re-
placed by V(x). Therefore, applying b. + 2iko ~ V to (7) we find after a bit of algebra that'

V(x) =(i/2~')8 V f dkk fdo' A, *(-.8, 8') q, (8', x) e'~'".

A three-dimensional analog of the Marchenko equation follows from (7) by Fourier transformation of
the k dependence of the right-hand side. One readily finds that

p„(o, x)=e"e "+'f dn K(8 n x)e" (9

K (8, n, x) = —(i/4~') f„dk kf d O' A „*(-8, 8') q„(8', x)e"".
Insertion of (9) in (10) gives

K(e, n, x)= fde'C(8, 8', n+8" x)+ fde'f„dp C(8, 8', n+ p)K(8, p, x),

(10)

In view of (10), Eq. (8) now reads

V(x) = —28 ~ V [K(8, 8 ' x,x)] . (13)

In order to recover V(x) from the scattering am-
plitude, one solves (11), using (12), and inserts
the result in (13). This requires a knowledge of
g (- 8, 8') for all k and all 8 and 8'.

Generalization of these equations to the case
with bound states, as well as studies of their
properties, will be published elsewhere.
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Multiplying {7) by —V{x)/4m and integrating lead di-
rectly to the well-known forward disperion relation for
A.

This representation of the potential may be used in
the Schrodinger equation to convert it into a nonlinear
equation for y in a manner analogous to that of P. Deift
and E. Trubowitz, Commun. Pure and Appl. Math. 82,
121 (1979).
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