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By letting the lattice spacing a approach zero as the order n of perturbation theory in-
creases in such a way that the product na remains fixed, we substantially improve the
numerical predictions. The approximation scheme described here is superior to conven-
tional Pade approximation.

In a previous paper' we proposed a Pade-like
scheme for extrapolating to the zero-lattice-
spacing limit of a gp' field theory expanded in
powers of g ' ' on a lattice. In this paper we
show that this scheme becomes inadequate when
the order of perturbation theory is sufficiently
large. We propose an improved extrapolation
method which appears to be free of the flaws of
the scheme in Bef. 1.

The extrapolation scheme used in Ref. 1 is de-
scribed below. For a gp' theory in d-dimension-
al space-time, the dimensionless expansion pa-
rameter x that always appears in the g '" ex-
pansion is

x =1/g'/2a' "'

q=a g' gy„x",
n=0

(2)

where n, P, andy„are pure numbers. u andP
fix the naive dimensions of ()). (For simplicity,
we are considering only a theory with zero bare
mass. ) With use of (1), the series in (2) takes
the form

q S- n/(4- d )X2n/(d - 4) ~ n~ +n+
n=O

Next we compute the dimensionless numerical

where a is the lattice spacing. The expansion on
the lattice of some physical quantity ()) such as a
Green's function or any energy level has the gen-
eral form
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quantity

N( ) (q/ s Q/(4- dj)(d 4)/2~

=x g &„x"= x/ Q e„x", (4)
n=O n=0

where the new series coefficients 6„and&„are
obtained by raising the power series in (3) to the
power (d —4)/2n and then inverting it

Assuming that d (4, (l) implies that the zero-
lattice-spacing limit a - 0 corresponds to the lim-
it x - ~. The problem is to extrapolate N(x) to
N(~) when only a finite number of coefficients e„
are known. The extrapolation procedure consists
of generating a sequence of extrapolants N» N»
N3, .. . which hopef ul ly approach the exact answ er
N(~). The nth extrapolant N„is computed by
raising the last expression in (4) to the eth pow-
er, truncating the series after the x" term, taking
the limit x - , and taking the nth root:

lim
X ~'x) ~ &]Xf n

truncated after gn term

(5)

In Ref. 1 we used this extrapolation technique
to compute various known quantities in agp'
field theory with d = l. For example, if E (g) is
the ground-state energy of the anharmonic oscil-

TABLE I. Comparison of the old extrapolation scheme
in {5) with the improved extrapolation scheme in (7) for
g@4 theory in one space-time dimension. The quantity
being calculated is 4g(dE/dg)/g /, where E is the
ground-state energy. The exact value of this quantity
is 0.569473... . Observe that in the old scheme the ap-
proximants approach the correct answer for a while and

then veer off. The improved extrapolation scheme ap-
proaches the exact answer monotonically and thus may
be further extrapolated to a limiting value.

lator whose Euclidean-space Lagrangian is given
by l. = 2 (()p)'+ & gy', then'

4g (dE /d g) = (0.569473. . .)g'" . (6)

TABLE II. Comparison of the old extrapolation
scheme in (5) with the new extrapolation scheme in (7)
for 4g(dE/dg)/[ gin(l +x)] in a two-dimensional gap

theory. [We are dividing by the series for 1n(1+x) and
computing the coefficient of the logarithmic divergence. j
Just as in the case d =1 the old extrapolants in column
2 appear to approach an answer and then veer off
while the new extrapolants in column 3 appear to con-
verge monotonically. For comparison, in column 4 we
have divided by ln(2+x). Note that the results are not
sensitive to the particular choice of logarithms.

Order n

Old Approx- New Approx- New Approx-
t' &n ant &n imant' &n

We computed in Ref. 1 the first five approximants
to the coefficient of g'" in (6): N, =0.6242, N,
=0.5861, N, =0.5754, N4=0. 5717, and N, =0.5707.
These five numbers suggest that the entire se-
quence of approximations is rapidly and mono-
tonically approaching the correct limit in (6).

However, we have now calculated on a computer
seven more approximants: N, =0.5708, N,

0 5712~ N8 0 5717~ N9 0 5720~ Nio 0 5721 ~

Njs =0 5719, and N12 =0.5719.
Thus, these extrapolants appear to behave like

the partial sums of a divergent asymptotic series;
they approach the exact answer for a while and
and then veer off. We must conclude that the ex-
trapolation procedure used in Ref. 1 is inadequate.
This Letter proposes a modification of this pro-
cedure which appears to give a convergent se-
quence of extrapolants.

The idea for this modification was suggested to
us in a short paper by Carroll, Baker, and Gam-

Order n

1
2
3
4

6
7
8
9

10
11
12

Old Approximant Nn

from (5)

0.624162
0.586107
0.575408
0.571738
0.570704
0.570754
0.571199
0.571687
0.572027
0.572123
0.571947
0.571532

New Approximant Nn

from {7)

0.477788
0.5353.28
0.548817
0.554843
0.558673
0.561548
0.563809
0.565563
0.566845
0.567683
0.568114
0.568195

1
2
3

5
6

8
9

10
11
12

0.4537
0.4429
0.4256
0.4224
0.4232
0.4243
0.4257
0.4274
0.4292
0.4311
0.4332
0.4359

0.3121
0.3639
0.3766
0.3858
0.3932
0.3987
0.4031
0.4069
0.4102
0.4132
0.4161
0.4189

'From Eq. (5).
"From Eq. {7), with division by in{1+x).

From Eq. (7), with division by ln(2+x).

0.1961
0.2961
0.3263
0.3563
0.3727
0.3827
0.3906
0.3965
0.4015
0.4060
0.4102
0.4142
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mel. ' They examined the question of when it is
correct to compute f(~) by expandingf(x) in a
Taylor series f(x) =pa„x",computing the diago-
nal Pads approximant P„"(x),and taking the limit
x - ~ for n fixed. The correct order of limits is
of course to fix x, to take n - ~ (which cannot be
done unless all the a„areknown), and then to
take x —~. For some functions f(x), it is incor-
rect to interchange the two limits n - and x- ~:
For f(x) =e *, P, '( ) = —&, P,'( ) =&, P,'( ) =-~,

Carroll, Baker, and Gammel' propose
(without proof) a recipe for computing e "=0
from the diagonal Pade approximants of the Tay-
lor series; namely, that P„"(x)be evaluated at
x =x„,where x„is a sequence of points approach-
ing . For the simple choice x„=n,there is a
vast improvement in the convergence: P,'(I) =-,',
P,'(2) =-,', and P,'(3) =~+,. However, no general
prescription is given in Ref. 3 for how one might
determine the optimal sequence x„.4

There is a physical reason why one might expect
the extrapolation procedure in Ref. 1 to break
down. In nth-order perturbation theory on the
lattice, the nth coefficient n„in (2) is a sum of

Feynman-like diagrams having at most n adja-
cent vertices. Since the distance between ver-
tices is the lattice spacing a, the physical size
of the largest diagram is na. However, the ex-
trapolation prescription in Ref. 1 consists of fix-

TABLE III. Comparison of the old and new extrapola-
tion schemes for the ground-state energy of the harmon-
ic oscillator (see Ref. 5). The tabulated numbers are
approximants to 2E/m = 1. Both sequences of extrapo-
lants seem to be approaching 1, but the improved se-
quence is monotonic while the old sequence is irregu-
lar. For the new sequence of approximants, requiring
that no=1 gives x„=n.

ing n and letting x- ~ (which is equivalent to a
-0); so the spatial extent of all diagrams in each
order approaches zero in this limit. But physi-
cal quantities, like masses or energies, are not
fixed by the very-short-distance behavior of
Green's functions, but reflect some of the long-
distance features as well. Thus, it would not be
surprising to find that the extrapolation proce-
dure in Ref. 1 ultimately leads to a divergent re-
sult.

The above argument suggests an improved ex-
trapolation procedure. To describe spatially ex-
tended features, we should take a - 0 in such a
way that ua is held fixed. Thus, rather than tak-
ing the limit x - ~ in (5), we redefine 1V„as

1/n

truncated after g" terfII

where for large n, x„grows like n' 'I' [see (I)].
For simplicity we take x„=n'"". For example,
when d =1 we take x„=n''. The results for
4g(dE/dg)/g' ' are given in Table I. When d =2,
the quantity 4g(dE/dg)/g is logarithmically di-
vergent (E is the vacuum expectation value of
the energy density). If, as is discussed in Ref.
1, we divide by the Taylor series expansion of

ln(1+x), we find that the extrapolants for this
ratio appear to approach a constant, which is
the numerical coefficient of the divergence.

The results are given in Table D. How sensi-
tive are the approximants to our choice of loga.-
rithm& In Table II we give the extrapolants that
arise after dividing by ln(2+x). These extrapo-
lants are also monotonic and appear to approach

Order n

1
2
8

6
7
8
9

10
11
12

Old Sequence of
A pproximants

(see Ref. 5)

0.6000
0.8847
0.7987
0.8812
0.8681
0.9089
0.9087
0.9221
0.9246
0.9858
0.9882
0.9449

New Sequence of
Approximant s

with x -n

0.8750
0.6788
0.7147
0.8086
0.8220
0.8617
0.8715
0.8924
0.8999
0.9124
0.9181
0.9262

Pade approximant

P 0

Pg 1

Pg
3

5

p „,„"(&)]„„
0.6242

0.5594

0.5770

0.4007

0.5682

0.5688

tP„„"(~)j,
„

0.4778

0.5209

0.5579

0.5240

0.5626

0.5605

TABLE IV. Pade approximants for 4g(dE/dg)/g /

with d= 1. Observe that the pade sequence is greatly
improved by evaluating it at x=x„=n~~. However, it is
still Dot nearly as smooth as the sequence in the right-
hand column in Table I.
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TABLE V. Psde approximants for 4g(dE/dg)/[g ln(1
+x)] with d=2. As in Table IV, the Pade sequence at x
=x„=nis not as smooth as the sequence in column 8 in
Table II.

TABLE VI. Pade approximants for the ground-state
energy of the harmonic oscillator (see Bef. 5). As in
Table III, the tabulated numbers are the approximants
to 2E/m =1. These Pads approximants are not as good
as the extrapolants in Table III.

Pade Approximant

Pp
f

P2
2

P4
4

5

P6

[P„q"(x)]„

0.4587

0.4674

0.4224

0.4800

0.4788

0.4190

[P„,g"(x)1„=,„=n

0.8121

0.8828

0.8858

0.4018

0.4191

0.4014

Pade Approximant

P 0

Pp
3

4

P 5

0.6000

0.7575

0.8194

0.8582

0.8837

0.9008

[P„,g"(x)]„=,„=n2

0.8750

0.6226

0.7677

0.8288

0.8680

0.8854

the same limit as the approximants in the third
column of Table II. Because ln(1+x) is slowly
varying, Table II does not rule out an admixture
of ln' divergence.

We have also examined the effect of the im-
proved extrapolation scheme on a calculation of
the ground-state energy E of the harmonic oscil-
lator whose Lagrangian is given by' &(Bp)'+ 2m'(p. '
In Table III we list the first twelve extrapolants
for 2E/m =1. Observe that the old extrapolants
approach 1 in an uneven fashion while the im-
proved extrapolants approach 1 monotonically.

For all the models we have examined we find
that the improved extrapolants approach their
limits smoothly and monotonically. ' This is par-
ticularly advantageous because there are many
numerical techniques available for accelerating
the convergence of smooth monotonic sequences
to their limits (Richardson extrapolation, Shanks
transformation, and so on).

Finally, the improved extrapolation scheme has
several advantages over a conventional Pade ap-
proximation. [We have in mind here a P„+,"(x)
Pade approximation for the series Q 5„x"in (4).]
The main advantage is that there are twice as
many extrapolants and so it is easier to extrapo-
late to the. limit of the sequence. In addition we
find that the improved extrapolants converge
more rapidly and are smoother than the Pade ap-
proximanants, regardless of whether P„(+)ixs

evaluated at x = ~ or at (see Tables IV-Vl) x =x„.
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It is suggested in. Bef. 3 that one should determine
the sequence x„bylooking for the poles of the Pade ap-
proximants. However, this method does not define the
sequence x„very clearly and it seems to give spurious
results for some models.

The details of this calculation are given by C. M.
Bender, F. Cooper, G. S. Guralnik, R. Boskies, D. H.
Sharp, and M. L. Silverstein, Phys. Rev. D (to be pub-
lished) .

It is, of course, not true that whenever x„grows
like n the extrapolants are monotonic. For exam-
ple, if we had chosen x„=100m'~~', then for small n the
results would have been indistinguishable from the be-
havior with x„=~, which is always monotonic.
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