
VOLUME 43, NUMBER 7 PHYSICAL REVIEW LETTERS 13 AUoUsr 1979

Quantum-Chromodynamic P Function at Intermediate and Strong Coupling

John B. Kogut, ' Robert B. Pearson, and Junko Shigemitsu
The institute for Advanced Study, ~nceton, Nese Jersey 08540

(Received 5 June 1979)

With use of strong-coupling methods, the energy of a long flux string is computed and
this quantity is used to renormalize the theory. This gives an expansion for the renor-
malization-group beta function which smoothly extrapolates from the strong-coupling
limit to the asymptotic-freedom value. The theory is described by three qualitatively
distinct regions over this range.

The introduction of gauge-invariant lattice the-
ories in Euclidean' and Hamiltonian' form has
made it possible to study non-Abelian gauge the-
ories directly in the phase in which quarks are
confined thus achieving one of the major roles
which quantum chromodynamics (QCD) is ex-
pected to play in strong-interaction physics. The
other role is at short distances where the the-
ory's asymptotic freedom' predicts almost free-
particle behavior for quarks, with great phenom-
enological success. ~ A major obstacle to date
has been the inability of either lattice or continu-
um versions to bridge the enormous qualitative
gap in quark dynamics between the two. There
is, however, one way in which the two kinds of
quark behavior seem naturally related, and that
is from the point of view of the renormalization-
group beta function. Thus it is this quantity that
we study in this Letter.

The lattice gauge theory is defined in terms of
the partition function'

Z(P = 1/g')

=f(n«)&exvbt~Ã(u)+H ~1), (&)

where l runs over all links and p over sll pla-
quettes of a regular hypercubical lattice, dg is
the normalized Haar measure over SU(3) for
each link of the lattice, and U(p) is the unitary
[3] representation of the product of the group
elements on the boundary of the plaquette p. If
the transfer matrix for this partition function is
constructed in timelike axial gauge and the limit
that the timelike lattice spacing vanishes is tak-
en, ' one obtains a Hamiltonian corresponding' to
(1)

e=(g2/2a) QE,2-xgtr[V(p)+H. c.],
~ = 2/g', (2)

where E,' is the quadratic Casimir operator C„
I runs over all links and p all plaquettes of a reg-

ular cubical lattice. Strong-coupling expansions,
i.e. , expansions in inverse powers of g, may be
obtained from (1) and (2). For the Euclidean the-
ory, one may use the Fourier decomposition over
characters,

exp& [X.(g)+X. (g))=I(P)Z~. (P)X, (g), (3)

where v runs over the representations of SU(3)
and

I(P) =Idg «p[P(x, +x. )]

~.(P)=&dg x. (g)exp[P(x. +x. )]/I(P), (4)

and group theory results on the integration of
products of characters together with conventional
graphical methods for high-temperature series
expansions to obtain expansions for quantities of
interest. For the Hamiltonian theory, one uses
standard Rayleigh-Schrodinger perturbation the-
ory in a Fock space of irreducible representa-
tions of SU(3) on each link diagonalizing E,m. The
action of products of U's on the ground state may
be computed with use of SU(3) Clebsch-Gordan
coefficients to decompose them. Matrix elements
of gauge-invariant operators may be expressed
in terms of group invariants e.g. , dimensionali-
ties, and 3-j and 6-j symbols, etc.'

In order to renormalize the strong-coupling
expansion, we must select some dimensionful
property of the theory to be held fixed. The
coupling constant then becomes a function of this
quantity and the cutoff, which in this case is the
lattice spacing. There are no more free param-
eters in the theory The qua. ntity which we hold
fixed is the coefficient of the linear term in the
potential between two widely separated quarks.
This is equivalent to the coefficient of the area
in the expectation value of the Wilson loop, or
the energy per unit length of an infinitely long
string in the Hamiltonian theory. The matrix
elements are to be computed in the gauge sector
of the theory without the effects of quark loops
which can screen the flux. There are several
important advantages to this choice of normaliza-
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tion condition: (1) it is a natural and straight-
forward quantity to compute in the strong coup-
ling expansion, (2) this condition assures that
the theory always remains in the confined phase,
and (3) this parameter has direct phenomenologi-
cal consequences on Regge behavior and "quark-
onium" spectrum. Having fixed the surface ten-
sion (or string tension, depending on circum-

stances), the manner in which the coupling con-
stant varies with the cutoff is described in the
usual way by the beta function:

P(g)/g =-ding/d ina. (5)

%e report here a calculation of the surface
tension in both Euclidean and Hamiltonian SU(3)
lattice gauge theories to order 1/g20 in the strong-
coupling expansion. The Hamiltonian result is'

p= (g'/2a2) [4/3 —(11/153)x —(61/1632) x3- 0.012 711 501 8x' —0.003 067 187 52x' —.. . j x = 2/g'. (6)

The Euclidean result is

p= (- 1/a ) [in(@+4(u + 12(us —10(ue —36(@7+391(us/2+ 1131(o~/10+ 2 550 837(um/512+. . . j (7)

where ar = ur&/3 is the natural expansion parameter for the Euclidean theory. Differentiating (6) and (7)
with respect to a gives, respectively, the results for P(g)/g for Hamiltonian theory,

—P(g)/g = 1 —(11/51)x' —(183/1088)x' —0.041 378 583 3x4+ 0.034 436 440 6x'+. . . ,

and, for Euclidean theory,

—p(g)/g = (2d lng/d inc) [ln~(l —16a&' —60aP+ 60uP+ 252~'+ 12].~'/2

+ 9021(@~/10 —1 690 677(@'0/512+. . . )+ 4cv4+ 12(u'

—10')' —36(u'+ 263(u'/2 —1989af/10+ 298 037(u"/5120+ ...].

(8)

(9)

In Fig. 1, we present a plot of Pade approxi-
mates to the Hamiltonian beta function. The Eu-
clidean beta function differs in details but has
the same qualitative features. The asymptotic
behavior for large g differs reflecting the differ-
ent way in which they treat the cutoff of short
distances. For g) 1.5 the effects of nonleading
terms in the strong-coupling expansion are small,
giving a 10% or smaller correction to the beta
function. For g between 1.5 and about 0.8, the
higher-order strong-coupling eff ects become
more important, driving the beta function down
to the region of the weak-coupling value. Near
@=0.9, there is clear evidence that the Hamil-
tonian strong-coupling beta function is "trying to
match" onto the weak-coupling function, with a
sharp break from the decreasing behavior in the
region 1.5 to 0.9. Below this region, where the
two functions overlap, the extrapolations of the
strong-coupling expansion become unreliable.
At these small values of the coupling constant
the perturbative expansion to the beta function is
valid, and in fact the higher-order corrections
to it are quite small.

Experience with previous applications of the
strong-coupling expansion to the calculation of
beta functions' leads us to expect that when furth-
er terms of the strong-coupling expansion be-
come available the accuracy with which the ex-
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FIG. 1. Pade approximates to the Hamiltonian beta
function.

! trapolated strong-coupling beta function agrees
with the weak-coupling result will improve. Nev-
ertheless, the current degree of agreement is
remarkable.

These results have several implications for
physics. For the first time, there is clear evi-
dence that strong-coupling methods may be ca-
pable of reproducing the asymptotic freedom
which is necessary to describe the short-distance
properties of hadrons. By combining the weak-
and strong-coupling results which have an over-
lap region where they are both valid, one obtains
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for the first time a quantitative description of
the theory over the entire range of coupling con-
stants. In fact, we may use the weak-coupling
result for the beta function to extrapolate the
string tension to zero lattice spacing, which
gives, after renormalization, a value for g(a}
for all a. If we choose a physical value for the
string tension, we obtain a zero-parameter ap-
proximation to n =g' j4m since g(a) is an approx-
imation to the renormalized coupling constant at
a length scale of a.

There is a clear separation of the physics into
three regions. As previously mentioned, for g
s 0.8 weak coupling prevails; for 0.8(g( j..5,
there is a transition region between weak and
strong coupling; and for g & 1.5, one is in a strong-
coupling regime. From the point of the strong-
coupling expansion, the onset of the transition is
caused by the thawing of fluctuations in the string,
allowing the flux to spread out lowering the en-
ergy. From the weak-coupling end, the onset of
the transition cannot be perturbative in origin
since the higher-order corrections to the beta
function are far too smaQ to account for it. How-
ever, estimates of the effects of instantons on
the weak-coupling beta function made by Callan,
Dashen, and Gross" give a correction which has
all the desired qualitative features. Thus it ap-
pears that the origin of the transition from the
weak-coupling point of view is the effect of vacu-
um tunneling, i.e. , gauge fluctuations which begin
to trap the flux. Just the opposite of the effect
which causes the transition from the strong-
coupling end. So we see that the main charac-
teristic of the transition region is the smooth
transition from flux confined to strings to un-
confined Qux over a narrow range of coupling
constant.

A lattice theory is of course only an approxi-
mation at any finite lattice spacing and in order
to recover a complete physical description one
must be able to take the limit that the lattice
spacing vanishes. During most of this process
the coupling will be quite small and essentially
one may use weak-coupling methods. However,
one begins in the strong-coupling regime and
must be able to safely make the transition to the
weak-coupling regime. The importance of the
present result is that it demonstrates that this
is possible with only a few orders in the strong-
coupling expansion. Several further areas of ex-
ploration are suggested. A combination of strong-
coupling Pade methods with the renormalization
group at weak coupling as suggested by Wilson"
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may prove to be very powerful. It is also of in-
terest to study the strong-coupling expansion for
a modified Hamiltonian with the leading irrele-
vant operators removed by adding six link terms,
And, of course, efforts are under way to extend
the strong-coupling series to higher orders. We
feel that it should be possible to eventually com-
pute corrections to order 1/g~ using present
methods. (The calculation of the g '4 coefficient
is nearing completion. )
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