## Electron Scattering Resonances in Fast D(High n)-N<sub>2</sub> Collisions

## Peter M. Koch

J. W. Gibbs Laboratory, Yale University, New Haven, Connecticut, 06520 (Received 4 June 1979)

The results of the first measurements of the velocity dependence of the total ionization  $\sigma_{t}$  and the total destruction  $\sigma_{d}$  (ionization + excitation + deexcitation) cross sections for fast Rydberg-atom-neutral-molecule collisions are presented. The observed resonant structure in and the absolute magnitudes of  $\sigma_I$  and  $\sigma_d$  unambiguously confirm the prediction that the Rydberg electron bound to a fast atom scatters quasifreely. The data also strongly hint that the ionic core does the same.

How Rydberg atoms R(n) with principal quantum number  $n \gg 1$  are affected by collisions with neutral and charged particles Y has recently been an active theoretical<sup>1</sup> and experimental<sup>2</sup> research topic. One useful parameter that is especially important for characterizing the results presented in this Letter is the ratio  $v_{T}/v_{0}$  of the relative velocity  $v_T$  of R(n) and Y to the orbital velocity  $v_0$  of the Rydberg electron  $e_{\rm R}$ <sup>-</sup>.<sup>3</sup> Experiments with R(n) and neutral targets Y in thermal beams and in vapor cells have all investigated the "slow" collision regime,  $v_T/v_0 \ll 1$ , in which the translational momentum of the incident  $e_{R}^{-}$  is small compared to its atomic orbital momentum. The recent theoretical work in this regime of Matsuzawa and other workers is built on the foundation laid by Fermi.<sup>3</sup>

In the opposite limit,  $v_T/v_0 \gg 1$ , Butler and May<sup>4</sup> first predicted that the cross section  $\sigma_I$  for ionization of the  $e_{R}$  in H(high n) + H(1s) collisions at velocity  $v_{\tau}$  should be **a**pproximately equal to the total scattering cross section  $\sigma_e$  for free electrons colliding with H(1s) at the same relative velocity  $v_e = v_{T^*}$  The physical basis for this prediction, subsequently generalized by Smirnov,<sup>5</sup> is

simple: Processes which change the momentum  $p_0$  of the  $e_R^-$  by an amount  $\Delta p \gg p_0$  will lead to ionization. For the present velocity range,  $\sigma_e$  is dominated by such changes, so that  $\sigma_I \simeq \sigma_e$ . This also leads to the prediction that  $\sigma_I$  should be *in*dependent of n when  $v_T / v_0 \gg 1$ . This is not the case when  $v_{\mathbf{r}}/v_{\mathbf{0}} \ll 1$ .

This Letter reports the first experimental confirmation of both these predictions in two related  $D(high n)-N_{2}$  collision experiments.<sup>6</sup> The collision partners were deliberately chosen for three reasons. First, for  $1.5 \leq E_e \leq 3.5$  eV free  $e^--N_2$ scattering has a large  $\sigma_e$  dominated by a series of  $N_2^{-}(^{2}\Pi_{\sigma})$  compound-state-induced resonances. This process has been studied extensively,<sup>7,8</sup> both experimentally and theoretically. Second, 6-13keV D(high n) atoms have velocities  $v_T$  that span the resonance region of  $\sigma_e$ . Third, techniques for producing in this energy range H(high n) atoms in "n bands"<sup>9</sup> and in Stark-tuned, laser-pumped, individual quantum levels<sup>10</sup> have been demonstrated previously.

The first experiment used the apparatus shown schematically in Fig. 1(a) to measure  $\sigma_I$  for process I,  $D\{35 \le n \le 50\} + N_2 \rightarrow D^+ + e^- + N_2(\Sigma)$ , where

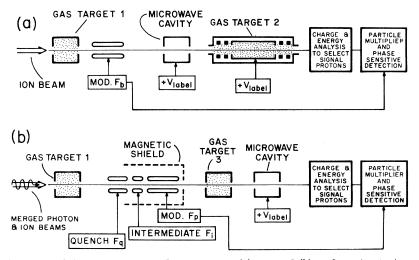



FIG. 1. Important features of the apparatus used to measure (a)  $\sigma_I$ , and (b)  $\sigma_d$  for D(high n)-N<sub>2</sub> collisions.

 $\Sigma$  refers to all possible final states of N<sub>2</sub>. A cw beam of D(n) atoms with excited states weighted by  $n^{-3}$  was produced by D<sup>+</sup>-C<sub>8</sub>F<sub>16</sub> electron transfer collisions in gas target 1. Experimental signals produced by the n band  $\{n\} = \{35 \le n \le 50\}$  were defined with use of field ionization by passing the D(n) beam through a static electric field  $F_b$ , square-wave modulated at 1 kHz between 110 and 420 V/cm. The energy-labeling technique<sup>9</sup> and lockin detection were used to measure the intensity of various D<sup>+</sup> signals produced by ionization of D{n} atoms inside one or the other of two devices which could be voltage labeled (V label = 100 V), the microwave cavity or gas target 2.

When  $V_{1abel}$  was applied to gas target 2, an energy-labeled D<sup>+</sup> signal was produced not only by the desired process I (scattered beam intensity  $I_{+}'$ ), but also by  $D(2s) + N_2 - D^+ + e^- + N_2(\Sigma)$  collisions, since the D(2s) atoms in the beam underwent modulated Bethe-Lamb quenching<sup>11</sup> in  $F_b$ . These D(2s) atoms were quenched, however, (survival <10<sup>-5</sup>) by driving resonantly the  $2s_{1/2}^- 2p_{3/2}$  transition in the TM<sub>020</sub>-mode cavity ( $\omega/2\pi = 9.91$  GHz) with an empirically set low-power level  $P_{1cw}$  which quenched <3% of the D{n} flux. An empirically set  $P_{high}$  was used to quench the entire D{n} flux by microwave multiphoton ionization.<sup>12</sup> Thus, difference signals ( $P_{high} - P_{low}$ ) were produced only by atoms in {n}.

When  $V_{\text{label}}$  was applied to the cavity instead, the  $(P_{\text{high}} - P_{\text{low}})$  energy-labeled D<sup>+</sup> multiphoton ionization signal yielded the intensity  $I\{n\}$  of atoms in  $\{n\}$ . It was typically 6 ppm of the total neutral-beam intensity  $I_0 \sim 3 \times 10^{11} \text{ sec}^{-1}$ , which was measured with an electrometer as a secondary-electron-emission current in a Faraday cup.

In order to subtract background gas contributions to signals,  $P_{high} - P_{1ow}$  measurements of  $I_{+}'$ ,  $I\{n\}$ , and  $I_0$  were made both with  $N_2$  directed into gas target 2 (gas "in") and with the same  $N_2$  flow directed into the surrounding vacuum chamber (gas "bypass").<sup>13</sup> They were repeated  $\geq 30$  times and averaged for each  $E_D$ . To keep the target density constant, the pressure difference for  $N_2$ gas in minus gas out was monitored with an ion gauge.

The present results for  $\sigma_I$  are shown in Fig. 2 as open circles, for  $v_T/v_0 \ge 25$ . The scatter is a measure of the reproducibility of the data. Since  $I_0/I\{n\} > 10^5$ , a large, unmodulated, energy-labeled D<sup>+</sup> flux produced by D(1s)-N<sub>2</sub> collisions contributed noise which severely degraded the  $I_1'$  measurements. In Fig. 2,  $\sigma_e$  (Refs. 7 and 8)

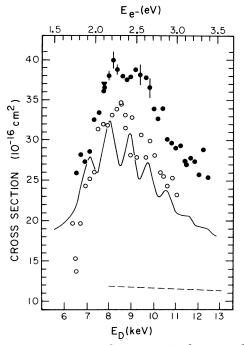



FIG. 2. Present results: open circles,  $\sigma_I$ ; closed circles,  $\sigma_d(n^*=46)$ ; inverted triangle,  $\sigma_d(n^*=71)$ . The absolute scale (with suppressed zero) was established with estimated error < 20% by normalization to  $\sigma_{10}$  at 8 keV. Solid line, experimental curve for  $\sigma_e$  (Ref. 7). Dashed line, experimental curve for  $\sigma_{10}$  for H<sup>+</sup>-N<sub>2</sub> collisions (Ref. 13), plotted vs  $E_{\rm D}$ +=2 $E_{\rm H}$ +.

is shown as a solid line with its energy scale placed so that  $v_e = v_T$ . The agreement between  $\sigma_I$  and  $\sigma_e$ , both in overall shape and in absolute magnitude, is rather striking, although  $\sigma_I$  appears to fall off more rapidly than  $\sigma_e$  on the lowenergy side of the gross peak. The quality of the data obscures possible vibrational substructure in  $\sigma_I$ . These results are the first experimental confirmation of the approximate equality of  $\sigma_I$  and  $\sigma_e$  in the limit  $v_T/v_0 \gg 1$ .

Small-angle scattering of the essentially unscreened nucleus of the D(high *n*) atom by the polarization interaction with N<sub>2</sub> can also contribute to  $\sigma_I$ . A formula derived by Smirnov<sup>5</sup> leads to an estimate of ~ 0.8×10<sup>-16</sup> cm<sup>2</sup> for this process, which is negligible on the present scale.

To measure  $\sigma_d$  for D(high *n*)-N<sub>2</sub> collisions, a second experiment (II) was performed with use of the modified apparatus shown in Fig. 1(b). D<sup>+</sup>-Xe electron transfer collisions prepared an  $n^{-3}$ weighted D(*n*) beam as before, but a constant  $F_q$ = 30 kV/cm ionized all atoms with  $n \ge 12$  (Ref. 10) and completely quenched all D(2s) atoms.<sup>11</sup> A cw, collinear, ~ 20-W/cm<sup>2</sup> photon beam from a frequency-stabilized<sup>14</sup> <sup>12</sup>C<sup>16</sup>O<sub>2</sub> laser [9- $\mu$ m, P(18) or P(20) line] drove n = 10 to  $n^* = 46$  transitions to prepare a fast  $D(n^*)$  beam with intensity  $I(n^*)$ ~  $10^5 \text{ sec}^{-1}$ . To Stark tune the transition off and on resonance, the electric field  $F_p$  was squarewave modulated between zero and a few V/cm (reset for each  $E_D$  because of the  $v_T$  dependence of the Doppler shift).<sup>12</sup> Phase-sensitive detection at the 27-Hz modulation frequency isolated the  $D(n^*)$  signal. Notice that this Stark-switching technique produced with fixed-frequency laser radiation a pure  $D(n^*)$  beam with a continuously variable  $v_T$ .<sup>15</sup>

As in process I, microwave multiphoton ionization<sup>12</sup> of the  $D(n^*)$  atoms inside a voltage-labeled cavity ( $V_{label} = 250$  V,  $TM_{010}$  mode,  $\omega/2\pi = 9.91$ GHz was used to measure  $I(n^*)$ . When N<sub>2</sub> was fed to gas target 3, this signal was reduced by collisional destruction of the  $D(n^*)$  atoms. Notice that in this *transmission experiment*, neither D(2s)- nor large D(1s)-produced ion signals were generated, which is a distinct advantage. A digital time signal and digitized analog signals proportional to  $I(n^*)$  and to  $I_0$  were processed by an Intel-8080-microprocessor-based data collection system.

The measured  $\sigma_d$  values for the process  $D(n^*)$ = 46) + N<sub>2</sub>  $\rightarrow$  D( $n \leq 28$  and  $n \geq 61$ ) + N<sub>2</sub>( $\Sigma$ ) are shown in Fig. 2 as closed circles. The n limits for the final state were determined to contribute to the signal as follows. Atoms with  $n \ge 61$  (including continuum states  $D^+ + e^-$ ) were ionized either directly in the collision or in the fringe field  $F_f$  $\simeq 46$  V/cm created before the cavity by V<sub>label</sub>. Atoms with  $n \leq 28$  were observed not to be ionized by the microwave field strength used for the experiment. Even though the  $\sigma_d$  curve lies 6–10 Å<sup>2</sup> above the  $\sigma_e$  curve over most of its range, it is immediately clear that they have similar  $v_{T}$  dependences. This is an unambiguous confirmation of the quasifree scattering of the  $e_R$ <sup>-</sup>. The 6.4 meV binding energy of  $D(n^*)$ , however, may cause the  $N_2$ -induced resonant structure<sup>7,8</sup> to be shifted toward slightly higher  $v_{T}$ . As was seen for  $\sigma_I$ ,  $\sigma_d$  appears to drop off more rapidly than  $\sigma_e$  below ~ 7.5 keV.

Also shown in Fig. 2 is one point taken with a  $D(n^*=71)$  beam prepared by  $9-\mu m_p R(20)$  laser excitation of D(n=10). To avoid ionization of  $D(n^*)$  in  $F_f$ ,  $V_{\text{label}}$  was reduced to 80 V. Within experimental error  $\sigma_d(n^*=71) = \sigma_d(n^*=46)$ , which confirms the predicted *n* independence of the cross section, at least for this one point. Notice that  $\sigma_d$  is ~ 10<sup>6</sup> smaller than the geometrical value  $n^4\pi a_0^{\ 2} \simeq 2 \times 10^{-9}$  cm<sup>2</sup> for  $n^*=71$ .

A plausible explanation for the approximately constant upward displacement of  $\sigma_d$  relative to  $\sigma_I$ and  $\sigma_e$  is quasifree scattering of the D<sup>+</sup> nucleus of the D(n) atom. The most likely D<sup>+</sup>-N<sub>2</sub> scattering event in the present energy range is electron transfer, D<sup>+</sup>N<sub>2</sub> $\rightarrow$ D( $\Sigma n$ ) +N<sub>2</sub><sup>+</sup>, where  $\Sigma n$  is predominantly 1s. The measured cross section<sup>13</sup>  $\sigma_{10}$ for this process is shown as a dashed line in Fig. 2. Notice that it is nearly constant as a function of  $E_D$  and that over most of the present energy range  $\sigma_e + \sigma_{10} \simeq \sigma_d$ .

We thus have an especially simple view of these fast collisions: When the  $e_{\rm R}$  gets close to a target atom or molecule, it scatters quasifreely while the nucleus acts as a distant spectator. When the nucleus gets close to a target, the opposite happens. Since the radius of the  $D(n^* = 46)$  atom is  $n^2 a_0 \sim 1100$  Å, this is not too surprising. In the  $D(n^*)$ -N<sub>2</sub> system, destruction proceeds predominantly via autodetaching negative-ion states:  $N_2^{-}(^{2}\Pi_g)$  when the  $e_{\rm R}^{-}$  scatters quasifreely and  $D^{-}(1s, n \simeq n^*)$  when electron transfer to the  $D^+$  nucleus takes place. In each case the probability is very low for the detached electron to reattach itself to a positively charged object, and so it escapes.

An estimate of the effective energy resolution in  $e_{\rm R}^-$  scattering experiments is straightforward. The maximum (+) and minimum (-) kinetic energies of the  $e_{\rm R}^-$  are  $E_{\pm} = \frac{1}{2}m(v_T \pm v_0)^2$ .  $\Delta E/\overline{E} = 4v_0/v_T$ , where  $\Delta E = E_+ - E_-$  and  $\overline{E} = (E_+ + E_-)/2$ . Notice that  $\Delta E/\overline{E}$  decreases with increasing  $\overline{E}$ . For a microcanonical distribution<sup>1</sup> of orbital momenta,  $v_0 = (\sqrt{3}n)^{-1}$  a.u. is the most probable orbital velocity. For experiment II,  $28 \leq v_T/v_0 \leq 40$ ,  $0.10 \leq \Delta E/\overline{E} \leq 0.14$ , and  $\Delta E \simeq 0.3$  eV. That this  $\Delta E$  is comparable to the separation of the peaks in the  $\sigma_e$  curve can explain why this structure is partially suppressed in the  $\sigma_d$  data.

There are a number of interesting questions to pursue experimentally and theoretically. Collisions with  $n \gg 1$  and  $v_T/v_0 \sim 1$  will involve many coupled states and probably will be difficult to model. It will be very important to measure the *n* distribution in the final state. A more fundamental collision system would be  $e_R$  -He; 35.4keV H(*n*) atoms would have the same velocity as free *e*<sup>-</sup> near the 19.3-eV <sup>2</sup>S resonance in  $\sigma_e$ .<sup>8</sup> Finally, it will be very interesting to determine whether the Ramsauer minimum in  $\sigma_e$  for *e*<sup>-</sup>-Ar, -Kr, and -Xe collisions<sup>16</sup> will show up as a minimum in  $\sigma_I$  for D(high *n*) collisions with the same targets.

The author wishes to thank J. Bowlin for setting

up the microprocessor system and W. Lichten for a useful comment. This research was supported in part by the National Science Foundation Grant No. PHY78-25655 and by the A. P. Sloan Foundation.

<sup>1</sup>I.C. Percival and D. Richards, Adv. At. Mol. Phys. <u>11</u>, 1 (1975); B. M. Smirnov, in *The Physics of Electronic and Atomic Collisions*, edited by J.S. Risley and R. Geballe, (University of Washington Press, Seattle, 1976), pp. 701-711; M. Matsuzawa, J. Phys. B <u>10</u>, 1543 (1977); M. R. Flannery, Ann. Phys. (New York) <u>79</u>, 480 (1973).

<sup>2</sup>P. M. Koch and J. E. Bayfield, Phys. Rev. Lett. <u>34</u>, 448 (1975); G. F. Hildebrandt, *et al.*, J. Chem. Phys. <u>68</u>, 1349 (1978); S. A. Edelstein and T. F. Gallagher, Adv. At. Mol. Phys. <u>14</u>, 365 (1978); J. A. Schiavone *et al.*, Phys. Rev. A <u>16</u>, 48 (1977).

<sup>3</sup>E. Fermi, Nuovo Cimento 11, 157 (1934).

<sup>4</sup>S. T. Butler and R. M. May, Phys. Rev. A 10, 137

<sup>5</sup>Smirnov, Ref. 1.

(1965).

- <sup>6</sup>Preliminary results presented in P. M. Koch, Bull. Am. Phys. Soc. <u>22</u>, 585 (1977), and <u>24</u>, 580 (1979).
- <sup>7</sup>D. Mathur and J. B. Hasted, J. Phys. B <u>10</u>, L265 (1977).
- $^{8}$ D. E. Golden, Adv. At. Mol. Phys. <u>14</u>, 1 (1978), and references therein.

<sup>9</sup>Koch and Bayfield, Ref. 2.

- <sup>10</sup>P. M. Koch, Phys. Rev. Lett. 41, 99 (1978).
- <sup>11</sup>W. E. Lamb, Jr. and R. C. Retherford, Phys. Rev.
- <u>79,</u> 41 (1950).

<sup>12</sup>J. E. Bayfield, L. D. Gardner, and P. M. Koch, Phys. Rev. Lett. <u>39</u>, 76 (1977).

- <sup>13</sup>P. M. Stier and C. F. Barnett, Phys. Rev. <u>103</u>, 896 (1956).
- <sup>14</sup>W. H. Thomason and D. C. Elbers, Rev. Sci. Instrum. 46, 409 (1975).
- $^{15}$ P. M. Koch, to be published.
- <sup>16</sup>E. W. McDaniel, *Collision Phenomena in Ionized Gases* (Wiley, New York, 1964), p. 118.

## Optical Pumping between Levels of a Bistable State of Alkali Atoms Trapped in Rare-Gas Matrices

L. C. Balling, J. F. Dawson, M. D. Havey, and J. J. Wright Department of Physics, University of New Hampshire, Durham, New Hampshire 03824 (Received 7 May 1979)

The results of pseudopotential calculations of the interaction of an alkali atom with its rare-gas neighbors in a solid matrix are presented. They can explain an interesting effect which appears to be due to optical pumping between two equilibrium positions in a bistable trapping site.

In the course of laser-excitation experiments<sup>1,2</sup> to study the absorption and emission spectra of Na and K atoms trapped in rare-gas solids at 10°K, we have discovered an interesting effect which appears to be due to optical pumping between levels of a bistable configuration of the alkali-matrix system. On the basis of pseudo-potential calculations of the alkali-rare-gas interaction, the effect can be explained in terms of a model in which the alkali atom moves from one stable position to another within a trapping site in response to optically induced changes in the alkali-rare-gas potential.

Matrix-isolated alkali atoms exhibit a number of distinct absorption bands associated with  ${}^{2}S_{1/2}$  $+{}^{2}P_{1/2,3/2}$  transitions in atoms located in different trapping sites.<sup>1-8</sup> The absorption of white light by Na atoms trapped in solid Ar, as observed in our experiments (Ref. 1), is shown in Fig. 1. This scan is in agreement with earlier work<sup>3</sup> on Na and is similar to absorption profiles in other alkali-rare-gas systems.<sup>2-6</sup> The absorptions due to different trapping sites are labeled with capital letters. Also shown in Fig. 1 is the




FIG. 1. A normalized scan of the absorption of white light by Na atoms trapped in solid Ar at  $10^{\circ}$ K. Also shown is the laser-excited fluorescence from absorption *B*.