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All the equilibrium states of the two-dimensional Ising system are convex combinations
of the pure phases and, as such, translation invariant. This has been rigorously proven
and is related to the instability of phase boundary lines with respect to thermal fluctuations.
%bile in higher dimensions stable phase coexistence is known to occur, the instability is
expected to be typical of two-dimensional systems.

In order to improve the understanding of the
cooperative phenomena present in bulk systems,
a great deal of attention has been given in statis-
tical mechanics and solid-state physics to models
of locally interacting spins on a lattice. A gen-
eric feature of such systems is the discontinuity,
at certain values of the relevant parameters
(which represent the temperature, magnetic field,
etc.), of the states of thermodynamic equilibrium.
At these values, the system may exist in various
phases. A pertinent question is then the possi-
bility of a locaQy stable phase coexistence. It
would be described by an equilibrium state in
which in different regions the spin configurations
show behavior typical of different phases. In
some cases, as the one discussed below, the co-
existence may be described by the presence of a
sharply defined interface. Further, if both the
interactions and the pure phases are translation
invariant, the phase coexistence relates to the
possibility of the breaking of translation sym-
metry in the infinite volume limit.

It is generally expected that the stability of
phase coexistence is dimension dependent, as
many other phase transition phenomena are known
to be. One method to induce phase coexistence,
introduced by Dobrushin in 19V2,' is by mixed
boundary conditions, i.e., of one type on the up-
per halves of the surfaces of a sequence of cubes

and of the other type on the lower halves. In
three or more dimensions such boundary condi-
tions for the Ising system at low temperatures
were proven to produce states in which there is
a basically horizontal interface. ' The proof that
for these states translation symmetry in the ver-
tical direction is broken was much simplified by
von Beijeren. ~ The construction was recently ex-
tended to the Widom-Rowlinson lattice model. '

In contrast, the Quctuations of the analogous
contour in the two-dimensional Ising system with
the above boundary conditions are unbounded
when the size of the box is increased to infinity.
For low temperatures, it has been shown, 4 that
in this limit any fixed finite region would typical-
ly be deep inside a region which is surrounded by
either +1 or —1 spins. In such a case, the limit-
ing state is (tt, + tt )/2, i.e., an ensemble aver-
age of the two pure phases. Subsequently, with
the aid of the explicit calculations of Abraham
and Reed,"this structure of the limiting state
was proven for all the temperatures below T,
and various other boundary conditions. ' These
results raise the possibility that the only Gibbs
states of the two-dimensional system are the con-
vex combinations of pure phases. The best evi-
dence in this direction has been a recent proof,
by Russo, ' of such assertion for all the Gibbs
states which have one of the main symmetries of
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the lattice.
The main result described here finally settles

the question for the two-dimensional Ising system.
I give an outline of a rigorous proof that at any
temperature below T„ if the system is locally in
a thermodynamic equilibrium, its state is an en-
semble average of the two pure phases. By im-
plication, when contact is attempted between two
phases, the fluctuations would spread one of them
over the other. Another conclusion is that any of
the system's "Gibbs states" has the full symme-
try of the lattice. Extensions to other systems
are brieQy mentioned.

Statement of the main result In t.
—he Ferromag-

netic Ising System (FIS), the spin variables o„
which are associated with the lattice sites, i&Z",
take the values + 1 with equal a priori probabil-
ities. The Hamiltonian is

H= (7g 0 ~ ~

In analogy with finite systems, states in the ther-
modynamic limit (i.e., infinite volume) may be
described by probability measures on the space
of spin configurations, 0 = (-1,I) . States which
are limits of equilibrium ensembles of finite sys-
tems, with some boundary conditions, are char-
acterized by the Dobrushin-Lanford-Ruelle (DLR)
equations' (which are the variational equations
for local minima of the free energy) and are
called Gibbs states.

If p and v are two probability measures on 0
we say that p dominates v in the Fortuin-Kastel-
eyn, and Ginibre (FKG) sense (p ) v) if, denoting
expectation values by the same symbols as the
measures, p(f) ~ v(f) whenever f is a monotone
increasing function of the spins. " A very useful
property of the FIS, to which I shall refer as the
FKG property, is that whenever a configuration
of spins on a boundary of a set pointwise domi-
nates another spin configuration, then the Gibbs
state induced by the first dominates, in the FKG
sense, the state induced by the other. "

The FKG property of FIS implies that for any
temperature the (unique) maximal and minimal
Gibbs states, in the FKG sense, are obtained by
taking the limits of grand canonical ensembles
with +1 and —1 boundary conditions on any mono-
tone sequence of sets which increase to z". We
denote these states by p„p . The FKG proper-
ty also implies that the following are equivalent
conditions: (1) p+op; (2) p&+)(o,)()0; and, for
d =2,""(3) typical (i.e. , "almost all") spin con-
figurations for p, + (p ) have an infinite cluster of

spin +1 (- 1). [The implication (1)~(3) is true
for any d.] By a cluster is always meant a sub-
set of the lattice which is connected in the near-
est neighbor sense, and a *cluster a set which is
connected in the weaker sense which permits di-
agonally nearest neighbor s.

At a high temperature p+ =p. ; however, if d) 2 there is a, transition temperature, T„below
which the conditions (1)-(3) are satisfied. At

these temperatures there are two distinct transla-
tion-invariant extremal states, which are the
pure phases.

My main result is that in two dimensions any
Gibbs state of the FIS is of the form A.p++(1
—X)p, for some X~[0,1j. Some of the impli-
cations mere discussed above. Full details of the
argument and its extension to other two-dimen-
sional systems will be given elsewhere. "

Outline of the argument. The f—irst step in the
analysis is to identify a convenient feature mhich
may be referred to as the interface. In two di-
mensions, for T &T„ this is simpMied by the ab-
sence, in configurations which are typical for p+
or p„, of infinite +clusters of the opposite signs. "
Thus, such configurations do not have infinite
contours, which are nonintersecting lines which
separate sites of different spins. The ambiguity
in the association of closed contours with spin
configurations is resolved by a simple convention
which me adopt from Ref. 4. The infinite con-
tours meet, therefore, two requirements of an
interface: (i) They are absent in pure phases;
(ii) for the regions enclosed by them they provide
boundary conditions which are known to lead to
pure phases. The third, and for us the most im-
portant, requirement is this: (iii) the absence of
an interface should indicate that the state is an
ensemble average of the pure phases. This con-
dition is also satisfied, as may be proved with
use of the FKG property. It leads to the following
criterion:

Criterion A: Let p be a Gibbs state of the FIS.
Then p =X(1-A)p +Xp, for some %~[0,1], if,
and only if, p-almost every spin configuration
has no infinite contour.

In view of the above result, I adopt. the infinite
contours as defining the interface lines. This
permits the application of geometrical ideas about
the fluctuations of such lines to the analysis of
general Gibbs states. The new technique is best
exemplified in the proof of the next step of the
argument, in which I rule out what seems to be
the simplest mode of, phase coexistence.

Claim& g. There is no Gibbs state with respect
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to which there is a nonvanishing probability for
the existence of a single infinite contour which,
further, has finite and nonempty intersections
with the lines fk} xZ, & k E Z.

Before outlining the argument, let me point out
that the decompsition of the state implied by
Criterion A corresponds to partitioning the space
of spin configurations by the sign of their infinite
cluster. This is an example of a partition which
is "measurable at infinity" since its outcome is
not affected by any local change of spins. It is
very useful to know that any Gibbs state can be
decomposed (uniquely) as a convex combination
of extremal Gibbs states, for which the asymp-
totic behavior of the typical configurations is the
same. More concretely, for extermal Gibbs
states the probability of any set which is meas-
urable at infinity is either 0 or 1.

To prove claim B, it is enough, therefore, to
disprove the existence of an extremal Gibbs state
for which almost surely (i.e., with probability
one) there is a unique interface y(v), with the
above properties. Let p, be such a state. Since
the lowest intersection of y with the "y axis" is
well defined, it has some probability distribution.
This is contradicted by proving that p, has to be
invariant with respect to translations in the "Y

direction. ". Following is an outline of the proof.
Let p be the state obtained by shifting j(j, one

step in that direction [ i e , P, (dg. ,.). = y, (do,. (, ,) )] .
In order to compare the two, we sample pairs of
spin configurations ( v, o) H 0 && 0 distributed inde-
pendently with the probability p, & p. To p. x p-
almost every such pair there correspond two
infinite contours y = y(o) and y = y(o). The levels
of intersections of these contours with vertical
lines have to have some (thermal) fluctuations.
Thus, even though the distribution of y is shifted
by one step upward with respect to y, it is no
surprise that one may prove (using the above
0-1 law for events measurable at infinity) that

(i) p, x P.-almost surely, y and y intersect in-
finitely often.

By the extremality of p, , the infinite clusters
below' y and y are almost surely of the same signs
and, since the infinite contour is unique, below

y and y there are no infinite clusters of the op-
posite sign. Therefore, by the assertion in (i) it
is not possible to find infinite clusters on which
v&a. This implies that any finite volume may be
completely surrounded by a connected set on

which 0 (0. By the FKG property and the Markov
property of the DLR condition this leads to JL(,

p,. For a similar reason, p, FKG p, , w'hich im-
plies that (ii) p, = P,. Hence, as claimed above,
is translation invariant, which leads to Claim B.

Next is a reduction of the general case which is
proved by a refinement of the argument of Ref. 8.

Claim C: The number of infinite contours in

typical configurations is at most one, for any
Gibbs state below 7",. If they occur, the contours
have the properties assumed in Claim B.

The only possibility left open by the above two
claims is the one to which the Criterion A applies.
This proves the main assertion.

Further extensions. —The main result discussed
here may be a generic feature of two-dimension-
al short-range systems. Most of the above argu-
ments extend to some other models which have
the FKG property, like the Widom-Rowlinson
lattice model. '" The remaining obstacle, which
is a much weaker version of Claim B, may be
overcome by a Peierls-type argument. This
leads to a proof of an analogous result subject,
however, to the restriction to low temperatures.
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