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stress due to interactions S have diagonal components
Sf S2 and S3. Then the difference in strain energy be-
bveen the bvo orientations is 2(=(2S, -S2-S3) —(-S(
+2S2-S3) =3(S(-S2). $ is the parameter which enters
Eq. (3).
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The crossover from first order to continuous transition induced by a symmetry-break-
ing field g in an n=2 cubic model, for which a stable fixed point is not accessible, is
studied lt i.s shown that unlike previously studied cases, the {g,T) phase diagram is
rather complicated, exhibiting critical end points, tricritical, and fourth-order critical
points. It is suggested that this phase diagram be studied experimentally in ferroelectric
Tb2(MoQ4)& by applying uniaxial and shear stresses.

It has recently been shown that a variety of sys-
tems, which are predicted to exhibit continuous
phase transitions within mean-field theory, yield
first-order transitions due to critical fluctua-
tions. ' ' 'Within the renormalization-group ap-
proach, this may occur either when the appropri-
ate model does not possess a stable fixed point' '
or when the stable fixed point is not physically
accessible. '*' However, by applying a symmetry-
breaking field g, the dimensionality of the order
parameter is reduced. The system may then
flow to a stable fixed point, and a continuous
transition is restored. ' " This situation has been
observed experimentally" in MnO and more re-
cently" in RbCaF, . These systems exhibit a first-
order phase transition which becomes second or-
der when a sufficiently strong uniaxial stress is
applied.

The (g, T) phase diagram associated with vari-
ous models has been studied by renormalization-
group techniques, ' perturbation theory, ' high-
temperature expansions, "and Monte Carlo cal-
culations. " The models which mere studied mere
found to exhibit a relatively simple phase diagram
displaying a phase transition line with a tricriti-
cal point at a finite, nonzero g [see Fig. 1(a)].
In the present Letter, we show that in certain
cases, depending upon the symmetry of the sys-
tem and the field g, the phase diagram is more

u(%x +ps ) t'@& pn ~ (lb)

For stability of the free energy, we require u &0
and 2u+ v & O. The critical behavior associated
with this model has been studied by several au-
thors. " It has been shown that in d =4-& dimen-

complicated, as shown in Figs. 1(b) and 2. These
phase diagrams exhibit critical end points, tri-
critical, and fourth-order critical points. The
calculation is performed for an n =2 component
vector model with cubic anisotropy, which is the
appropriate model for the ferroelectric transition
in tetragonal" Tb, (MoO, ),. It is predicted that
the phase diagram of Fig. 2 should be observed
experimentally by applying uniaxial and shear
stresses in various directions in the x-y plane.
We believe that similar phase diagrams shouM
be observed in some of the physical systems
which dg not possess a stable fixed point, such
as' ' UQ„MnO, Cr, and Eu, by applying a mag-
netic field or a uniaxial stress in certain direc-
tions. We shall discuss this problem in a future
publication. "

Consider ann =2 component cubic model de-
scribed by the following Landau-Ginzburg-Wilson
(LQW) Hamiltonian:

0= fXd"x, (1a)

K = —2 r(qr, +pn ) —~a[(Vt'p, ) + (Vqpn) ]
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FIG. 1. Schematic (g, T) phase diagrams associated
with the e = 2 cubic model which lies in region (a) with
symmetry-breaking fields g& and g2 defined by Eqs. (8)
and (4). Thin lines represent continuous transitions,
thick lines represent first-order transitions, T& and Tp
are tricritical points, and C is a critical end point.

sions (e &0) the isotropic fixed point (v* =2u*) is
stable. However, by examining the flow diagram
of this model on the critical manifold it is dis-
covered that, although the model possesses a
stable fixed point, there are two regions in the
(u, v) plane satisfying u&0 and 2u+ v &0 which
lie outside its domain of attraction (see, e.g. ,
Refs. 5, 6, and 9). The two regions are given by

(a) v & 6u & 0 and (b) 0&v & —2u. (2)

Therefore, if the initial physical Hamiltonian lies
in one of these regions, the stable fixed point is
not accessible, and the transition is expected to
be first order. " The effect of a symmetry-
breaking term

gg(PL Ps )

on the transition has recently been studied, ' if we
assume that the initial Hamiltonian lies in region
(a). It has been found that the (g» T) phase dia-
gram exhibits a tricritical point, as shown in
Fig. 1(a). Here we analyze the effect of a sym-

metry-breaking field

(4)

It is readily seen, by applying a 45' rotation in
the (q&» y, ) plane, that this problem is eiluivalent
to one which is described by the same Hamiltoni-
an (1) but which lies in region (b) with a symme-
try-breaking field g,. We therefore consider the
Hamiltonian

-u(y, '+p, ') -vy, 'y, ', (5)

withe, = r-g, ~, =r+g, and —2u&v &0. We ana-
lyze the phase diagram associated with this mod-
el in the limit of large symmetry-breaking field
g& 1 and for v, u «1, v +2u «O(v, u). For gz 1
there exists a critical line I defined by». ,=O(u, v)
which separates the disordered phase (y,) =(yg
=0 from an ordered phase in which (y,) & 0 and

(y,)=0. Inside the ordered phase, there exists
a transition line II below which (yg becomes non-
zero. To study this phase transition we define a
shift in the order parameter y, :

cpi= M+0, Mm =xi/4u—. (6)

In terms of v and y, the Hamiltonian (5) takes the

FIG. 2. Schematic (g&,g„T) phase diagram Th.in
lines are continuous transitions; thick lines and shaded
areas are first-order transitions; dash-dotted lines are
tricritical points; and dashed lines are critical end
points. T& and T& are tricritical points, C is a critical
end point, and E is a fourth-order critical point. The
line T2I is the wing critical line associated with the
tricritical point T2. The critical lines in the g&-T, g2-T,
and g&-g& planes and the curve T&EC form a boundary
of a critical surface.
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4 B
4+2 B~2 (8)

The parameters which appear in this Hamiltonian
can be calculated with use of a diagrammatic ex-
pansion in u and v. We find that to second order
in u and v the parameter u4 is given by

u, =u —(1/4u)v' —4B(r,)v'+0(v', u'),

where

1
-~«l~l(1 (F, + q')' (2')" ' (Qb)

By calculating the appropriate diagrams for 7
and u„one obtains r =F, +0(u, v ), and u, =0(u', v')
&0. In three or more dimensions the effective
Hamiltonian (8) yields a continuous transition for
u, a 0, a first-order transition for u4 & 0 (with u,
& 0) and a tricritical point at F = 0(u, ) and u,
=0(u, )~ The tricritical point can, therefore, be
located to leading order in u and v by solving the
equations F,(r, g, u, v) =u, (r, g, u, v) =0. The in-
tegral B(F,) is a decreasing function of F„and it
approaches zero as F,-. Therefore, for large
7, one has u4) 0, and the transition is continuous.
However, as F, decreases, u, changes sign and
the transition becomes first order. The system
hence exhibits a tricritical point at F, =F', , given
by

B(r, ,) = 1~1(2 -v/u)(2u+v/v'). (10)

Since the expression is valid for r, , —1 [with
B(F, ,) 0(1)], the existence of the tricritical
point has been established only for 0& 2u+ v (v'.
However, the same result is expected to be valid
even for 2u+ v &0 (v') (with v &0), since by apply-
ing renormalization-group transformation in d
=4-& dimensions, the Hamiltonian Qows to the
region 0 & 2 u+ v & 0 (v B), where Eq. (10) can be
satisfied. A similar analysis for the critical line
I shows that no tricritical point exists on this
line in the limit of large symmetry-breaking
field g. This suggests that the critical line I
should terminate in a critical end point" as shown

form

~ = —BFp' —BF,yB' —B [(Vc)'+ (VgB)']

—lop —'wBGg7B —u(o' +pB )-vo pB ~

where r, =2Ir, I, r, =r, =2vM', lv, =4uM, and lv,
=2vM. Far from the transition to the disordered
phase, i.e., for ~, & —1, one can integrate over
the 0 variable and obtain an effective Ising-like
Hamiltonian

1 2 1Ã „g= ——,F y, ' ——,(Vy, )'

B ~ 8
B~l B~l (12)

where r, u4, u„and u, can be calculated diagram-
matically for small u and v. To leading order in
u and v, the fourth-order critical point is defined
by the equations

(r 9 gltg21 0 ) 4(rp glf gB9

=uB(r~ g» g»u~v) =0

with u, &0. We have solved these equations, and
thus demonstrated the existence of a fourth-order
critical point. This solution will be discussed in
more detail in a future publication. "

The model described in this paper is directly
applicable to the phase transition in" Tb, (MoO, ),.
This is a tetragonal crystal which exhibits a
first-order ferroelectric transition associated
with a zone-boundary mode q = [B,B, 0]. The tran-
sition is described by the LGW Hamiltonian"

&= —' r4 1'+e B') --'[(Vm, )'+ (Vq, )']
—u( 1'+eB')-ve 1'e B'-e lm, (m, '-V.')

+0 ((p').

This Hamiltonian possesses an extra fourth-order
term, w, which does not appear in the Hamiltoni- '

in Fig. 1(b).
In order to analyze the phase diagram in the

three-dimensional space (g„gB,T), we first out-
line the calculation which shows that there exists
a fourth-order critical point at nonzero fields g,
and g,. The various thermodynamic surfaces
which appear in the (g» T) and (g» T) planes can
then be connected in a simple way to yield the
phase diagram of Fig. 2. We consider a Hamil-
tonian which lies in region (a). The phase diagram
associated with region (b) is obtained by inter-
changing g, and g, in Fig. 2. To verify the exis-
tence of a fourth-order critical point, we first
perform a rotation in the (y» y, ) plane so as to
diagonalize the quadratic term. The following
Hamiltonian is obtained:

X = rr—,y,
' —Br,(,' -B[(V),)'+ (Vq, )']

u(4, '-+0,') v4, 'k.-' ~0,4.((,' 0,'), -(ll)
where g, and g, are the rotated y's, and the pa-
rameters T„r„u, v, and m are functions of x,
g„g„u, and v. Assuming large symmetry-
breaking fields, we take 7,=0 and r,=1. Integrat-
ing over the g, variable one obtains an effective,
Ising-like Hamiltonian

K,~~
——Br (1 - B(V/1) —uB(1

295



Vor.UMz 43, NUMszR 4 PHYSICAL RKVIKW LETTERS 23 JUx.v 1979

an (1). However, this term is a redundant vari-
able. By applying an appropriate rotation in the

(y„y,) plane, the Hamiltonian (13) can be trans-
formed into a model of the form given by Etl. (1).
By applying uniaxial and shear stresses along
various direction in the x-y plane, the fields g,
and g, are realized and the (g„g„T)phase dia-
gram can be mapped.

The analysis presented in this paper can be
easily extended to the case of the n =3 cubic
RbCaF» and the phase diagram (2) is expected
to be realized in this crystal. It is also expected
that similar phase diagrams should also occur in
systems with no stable fixed point, such as UO„
MnO, Cr, and Eu. This can be achieved by ap-
plying a symmetry-breaking field which favors
an ordering different from the one favored by
the fourth-order anisotropic terms. "

In summary, we have demonstrated that the
crossover from first order to continuous phase
transition induced by symmetry-breaking fields
can lead to quite complicated and interesting phase
diagrams. We suggest that these phase diagrams
be tested experimentally in real physcial systems.
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~~By adding a sixth-order term u(p& + y2 ), ~ & 0, to
the Hamiltonian (5), one can study its phase diagram
in the otherwise thermodynamically unstable region 0
&2u &-v, using the mean-field approximation. The
phase diagram of Fig. 1(b) is obtained.
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scopic variable. The Anderson-Brinkman-Morel
(ABM) state, generally accepted to describe the
'He-A phase, ' breaks this gauge symmetry in a
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A change in the phase of the order parameter of He-A can be undone by a subsequent
rotation. We investigate the dynamical consequence of this broken relative gauge and
rotational symmetry, In particular a whee) rotated in the liquid acts as a "gauge trans-
former" driving a superflow. Such experiments provide a very direct probe of this unu-
sual feature of the order parameter, at the same time measuring the orbital quantum
number of the pairs.

The defining property of a superfluid is the
broken gauge symmetry; that is, the phase of a
wave function becomes a significant and macro-

296 1979 The American Physical Society


