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TABLE I. Fitting parameters for simple model. Department of Energy.

Curve Temperature
in Fig. 1. (K) Surface xm ~

455
460
310

Pb on Nb 0.0028 0.10 0.46
Nb 0.0028 0.04 2.5

0.0026 0.0005 2000

«Atomic fraction of H in Nb.
Extrapolated from run B by Sievert's lavr using E,o~

=16.48 kcal/mole H2 (Ref. 12).

diffusion through this layer is not a rate-limiting
step, then in principle the surface parameters
that determine adsorption and dissociation can be
varied independently of bulk parameters, such as
the heat of solution, to achieve a desired result,
such as the high bulk uptake rate. Hence, by
using composite systems, both surface and bulk
parameters can be optimized by using the proper
combination of metals.

We thank M. El-Batanouny, K. G. Lynn, and

D. O. Welch for discussions of this work and R. J.
Smith for his LEED measurements. This work
was performed under the auspices of the U. S.

J.A. Pryde and C. G. Titcomb, Trans. Faraday Soc.
65, 275S (1969).

S. M. Ko and L. D. Schmidt, Surf. Sci. 42, 508 (1974).
L. Johnson, M. F. Dresser, and E. E. Donaldson,

J.Vac. Sci. Techuol. 9, 857 (1972).
S. M. Ko aud L. D. Schmidt, Surf. Sci. 47, 558 (1975).

~K. F. Poulter and J.A. Pryde, in Proceedings of the
I"olrth, Internationa/ Vacllm Congress, Manchester,
Aprg f968 (Institute of Physics aud the Physical Society,
London, 1969), p. 111.

E. Fromm and H. Uchida, Vak. Tech. 26, 174 (1977).
N. Boes and H. ZQchner, Z. Naturforsch. 31a, 754

(1976).
H. SchultmM, ater Sci.. Eng. 2, 189 (1968/69).
G. Perriot, J. Phys. .(Paris) 28, 472 (1967).
G. Pfeiffer and H. Wipf, J. Phys. F 6, 167 (1976).
P. A. Redhead, J. P. Halison, and E. V. Koreulsen,

The Physical Bases of Ultra High Vacuum (Chapman
and HaB, London, 1968).

J, A. Pryde and C. Q. Titcomb, J. Phys. C 5, 1293
(1972).

~SH. Conrad, G. Ertl, and E. E. Latta, Surf. Sci. 41,
4M (19?4).
"D. r. Hagen and E. E. Donaldson, Surf. Sci. 45, 61

(1974).

Strain Defects in Alkali Halides: A Heuristic Model for Glasses

Baruch Fischer and Michael W. Klein '
DePartment of Physics and MateriaEs Research Laboratory, University of Illinois at Urbana ChamPaign, -

Urbana, I/linois 6ISOI
(Beceived 6 March 1979)

We present as idealized solvable model for the los-temperature properties of strain
defects dissolved in alkali halides. The predicted specific heat and thermal conductivity
are very much like those for glasses. Our calculation suggests a strong analogy between
the lour-temperature properties of strain defects and those of glasses.

The low-temperature properties of glasses' non-echo4 and the hole-burning experiments' one
have been of considerable interest during the past must consider strain intexactions between the
few years. A number of anomalous properties of two-level tunneling states as was discussed by
glassy materials have been explained using the Black and Halperin. ' It was recently also pointed
idea of two-level tunneling states proposed by An- out, ' that strain interactions may play an important
derson, Halperin, and Varma' and by Phillips' role in giving the appropriate broad distribution
(AHVP). of tunneling states.

Whereas the AHVP model explains the general The purpose of this paper is to present an ideal-
features of the glass at low temperatures, it ized model which shows that small concentra-
considers the tunneling units as essentially iso- tions of strain dipoles, like CN, dissolved in al-
lated and presents no microscopic picture for the kah-halide crystals produce very similar low-
origin for the constant density of states at low temperatures properties to that observed in
energies. However, in order to explain the pho- glasses when strain interactions between the tun-
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neling CN units are considered. The system un-
der consideration presents, to our knowledge,
the first model in which glasslike thermal proper-
ties are shown to arise purely from strain inter-
actions between tunneling units with a well-de-
fined tunneling matrix element. By no means do
we assert that these ideas are necessarily ap-
plicable to real glasses which are believed to
have two-level tunneling states proposed by AHVP.

An isolated noninteracting CN ion in the alkali-
halide host forms a strain dipole of ellipsoidal
form '-' with a traceless strain tensor ~. ~ has
a number of fixed discrete orientations at low

temperatures. The orientations are believed to
be in the (111) directions for CN in KCl and

in the (100) directions"' for CN in NaCl.
Figure 1 shows the energy levels for an isolated

CN ig an externally applied strain" field in the
x direction. In Fig. 1(a) and CN has six orienta-
tions in the (100) directions (CN in NaCl) with
a 90-deg tunneling matrix element -4/2, where-
as in Fig. 1(b) the CN is allowed to have four
orientations in the +x and +y directions only with
tunneling matrix element -4. A calculation
shows that the qualitative physical features of
the specific heat C and the thermal conductivity
~ are similar for the four- and six-orientational
strain tensors. However, since the eigenvalues
of the former can be obtained exactly, we adopt
the four-orientational tensor as our model.

The expression for the strain interaction be-
tween a pair of CN units is calculated in Eqs.
(3) and (4) of Ref. 7. The effect of the random

positions of the strain units results in a prob-
ability distribution P($) of the strain fields $.
Calculations" give that P(t') has a Gaussian form
P ($)~ exp [-g'/(25, ')] for $ )& 5, and P (t') = m

' 6/
(5'+ g') for $ & 5, where 6 and 5, are effective
widths of the distributions for the Lorentzian and

Gaussian, respectively, and 6 is given in Eqs.
(6) and (7) of Ref. 7.

In the realistic CN system the strain fields
arise from the CN interacting with each other.
In order to make the problem tractable, we adopt
a mean-field approach in which a given strain
tensor experiences a total strain field, internal
plus external, which is a random variable. " We
next idealize the model further by making two as-
sumptions: (1) The strain dipoles are allowed
to have four orientations only (in the ax and +y
directions): (2) We replace the strain on a dipole
by a random external strain field which may have
either a Gaussian or Lorentzian probability dis-
tribution. Thus we abstract our problem into a
solvable model satisfying these two assumptions,
and a.meaningful comparison with any physical
system will be limited by the validity of these two

assumptions. Assumption (2) explicitly neglects
any contribution to the thermal properties arising
from the decrease in strain fields as the dipole
disorder and neglects cooperative effects between
the dipoles (which, by a more correct treatment
we find to undergo a spin-glass-like phase tran-
sition). Approximation (2) is likely to give a
representation of the physical CN system only
when T «~.

The Hamiltonian 8 for a four-orientational di-
pole with a strain field $ in the x direction is

IJ =H~+H~,

where

0 0 0 (2)

with

FIG. 1. (a) Energy splitting of the six-orientational
defect with 90-deg tunneling of —4/2 as a function of
an applied stress of (2St4)(1,0, 0). (b) Energy splitting
of the four-orientational defect with 90-deg tuxtneling of
-~ as a function of $ = 2(S, -S&), where S& and S~ are
the stresses in the x and y directions, respectively.
The four levels are labelled 1 to 4 to refer to the ener-
gies in the text.

where 6e~ is the strain distortion due to the pho-
nons. We also denote the phonon tunneling-dipole
couplings y and y' by the relation y=~(8$/&e),
y'=-,'(Bb/Se ). The four eigenvalues of the Hamil-
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tonian IJO are

E~~=+ ($ +46 ), e (3)

where the subscripts 1 and 3 refer to the + sign.
y and y' are assumed to be constants independent
of the phonon modes. In the usual glass problem
y' is considered to be small compared to y, how-
ever, for the CN system in alkali halides there

is experimental evidence that y' is appreciable. "'
Therefore for large strain fields we use a soft-
tunneling model' in which h and therefore y'
changes with g. Certain values of 6 decrease
with strain, others increase. ' The random strain
interaction results in a set of random 4's.

The partition function for a single strain dipole
in the presence of a strain field in the [100] di-
rection is Z, = 2 [coshP) + coshp($'+ 4b, ')'~']. Thus,
the specific heat C is given by

C kB TN~
" x+y

8 cosh-,'(x+y)
X —g

cosh-, (x —y) P
(4)

where x =p$, y = [xa+4(pb, )ap~, and p(x/p) is
the probability density of $. Changing variables
of integration in Eq. (4) gives

C=k 'TN " (~ )
id~ (5)cosh u P~

We consider several cases of interest and show
the corresponding specific heat in Fig. 2.

Case I.—Gaussian field distribution, P($)
= (2«') ' 'exp[- 2 ($/5)']. For this case we dis-
tinguish three different regions of temperature:
(i) With Pb.'/5»1 and 5»&, Eq. (5) gives, for
very low T, C =ks'N~to'~'exp[- 3w'~'], where
to =dP/T6; (ii) with P& = 1 and P5» 1 it gives
C =N~(2/w) 4 /(T5); snd (iii) with PE«1 and

p5»1, nowC= k'sTN(2 w/)' 'I[m' +(pb)']/5. For
this case, C increases exponentially with in-
creasing T for very low T, then decreases pro-
portionally to T ' for T 6, and for higher T
(still T«5) C o:N, T/5, i.e. , C is linear in T.

Case II.—I orentzian distribution of &, p($)
=m '6/(5'+$'). Here again we distinguish three
regions of temperature: (iv) If Pb, »1, 5»b. ,
and 5/p «6', then C=kB'TN~s(5/N„)& '; (v) with
Pb, = 1 and 5/6»1, here C ~NEAP/5T; and (vi) with
Ph«1 and P5»1, we obtain C=~kB TvN~/5.
Thus for a Lorentzian distribution of fields the
predicted C for very low T (T«4) is proportional
to TN„', for T =b., C~N~/T; and for T»6 (still
T«5), C ~ TN~/5. Since for the I orentzian dis-
tribution 5 ~N„the specific heat for T»b, (T
«5) is linear in T and independent of N„.

The low-temperature specific heat of CN in
NaCl was measured by Reddy and co-workers. '+"
In the 200- and 1000-ppm samples, C increases
as T increases from 0.3 K, comes to a maximum,
then decreases and comes to a minimum around
1 K. Above 1 K, C is approximately linear in T.
Qualitatively this behavior is according to our
model discussed above. For the 5000-ppm sam-

pie, C is linear in T from about 0.3 to 3 K with
no dip in C observed. This result can be quali-
tatively understood if one assumes the soft-tun-
neling model in which ~ is a function of the strain
field. For low-concentration samples, g is rel-
atively weak and the decrease in 4 is not appre-
ciable. However, for the 5000-ppm sample, 5
is large which results in an appreciable prob-
ability for small values (as well as large values)
of ~. If this interpretation is valid, then a dip
in C for the 5000-ppm CN should occur below 0.3
K. Using C» = 4.87, C» = 1.24, and C44= 1.26,
each in units of 10" ergs/cm for NaC1, we cal-
culate C. For a (100) stress' pv, = 5 ~ 5 && 10 '
cm' for KCl and p»&& = 0.58. From the ratio of

LIJx
C3

4

CL
4J p
V)

FIG. 2. .Qualitative sketch of the low-temperature
specific heat as a function of the temperature T. Curve
I is the sketch for the Gaussian distributed strain fields
and shows an exponentially low specific heat as T 0.
Curve D is for the Lorentzian distribution of fields.
Both curves are linear in T in the high-T region shown
in the graph. For purposes of clarity the origins of
the curves are displaced from each other.
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the unit cells for KC1 and NaCl we obtain (P~a) Nacl-4.4)&]0 4 cm . Assuming y & eV we obtain
() =1.2x10 "Ns ergs/cm'. This gives C = ks'mTN, /
12() =420T ergs/cms for T &6 and T«(). This is
about one-fourth of the measured C for the 1000-
and 5000-ppm samples. This result is reasonable
considering the approximations made. For the
200-ppm sample we expect a good deal of disor-
dering of the dipoles around 2 K and approxima-
tion (2) breaks down.

The thermal conductivity ~ is next calculated
with use of the expression""

z= ,'JC(u)—/(e)v du, (6)

where C(co) and /(v} are the phonon specific heat
!

and mean free path, v is the sound velocity, /(ur)
= [l„,'+l„,'] ', where l„,and l„~are the mean
free paths due to resonant and relaxation proces-
ses from the CN tunneling units, respectively.
At very low T the contribution from E„&' de-
creases at least proportional to T' and is neg-
ligible whenever E„,' is appreciable. However,
for T&2~, where /„,' is exponentially small
l„&' will play an important role in determining

The matrix element of transition M,.; between
levels i and j is M,.;=(g, !IJJ(,), where g; and g~
are the eigenstates of 8,. We have M23 f and
M„'=(y&-y'$)'/($'+4&') and M, ;=0 for all other
i and j. Thus for large $ ($&2A), M,~=y'; and
for small (, M,~ =y/4 and'6"

2m p" M„'sinhPy6(Kw —2y)+M»' sinhP)5(he@ —2$)
(d

//pv, .'J, coshPy+ coshP)

where y = ($'+ 4LP)' '. Integrating Etl. (7) and approximating M„'by its large field value of y" give

y0 &/2)»inh(|3&~/2} y"U(z) p(z/2)(z/)t) sinh(pz/2)
pv' cosh(pi~/2)+ coshf(|3/2)(~'+16m')"'] cosh(phrs/2)+ cosh(pz/2) (8)

where z'= (are)' —16bP, and U(x) is the unit step
function, i.e. , U(x) =1 for x&0 and U(x)=0 for
x &0.

Substituting Eti. (8) into Eq. (6) and letting
y=0.5 eV and y'=0. 2 eV"' give

K —AT
q

T &24~
'I

BTO, d & T &26,
where A=12pVkq'g(3)~/[&aye'& p(0)] ', and

q(3) = Q (2n+1) '=1.202.

Thus A = 7 x 10 ' W/cm deg'. B is obtained by
substituting /„& ' in Eq. (6), where /„,' is pro-
portional to T'for T &24 and E„&'becomes pro-
portional to T'exp(-b, /T) for T «b, .

In this paper we discuss only z and C; however,
our model predicts anomalous properties in the
sound velocity and absorption as well as in the
phonon echo measurements.

In conclusion we have presented an idealized
model which for the first time shows that strain
dipoles dissolved in ordered crystals will have
glasslike properties. We believe that further ex-
perimental as well as theoretical study of the CN
system may contribute towards understanding the
low-temperature properties of strain dipoles as
well as glasses in general.
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The crossover from first order to continuous transition induced by a symmetry-break-
ing field g in an n=2 cubic model, for which a stable fixed point is not accessible, is
studied lt i.s shown that unlike previously studied cases, the {g,T) phase diagram is
rather complicated, exhibiting critical end points, tricritical, and fourth-order critical
points. It is suggested that this phase diagram be studied experimentally in ferroelectric
Tb2(MoQ4)& by applying uniaxial and shear stresses.

It has recently been shown that a variety of sys-
tems, which are predicted to exhibit continuous
phase transitions within mean-field theory, yield
first-order transitions due to critical fluctua-
tions. ' ' 'Within the renormalization-group ap-
proach, this may occur either when the appropri-
ate model does not possess a stable fixed point' '
or when the stable fixed point is not physically
accessible. '*' However, by applying a symmetry-
breaking field g, the dimensionality of the order
parameter is reduced. The system may then
flow to a stable fixed point, and a continuous
transition is restored. ' " This situation has been
observed experimentally" in MnO and more re-
cently" in RbCaF, . These systems exhibit a first-
order phase transition which becomes second or-
der when a sufficiently strong uniaxial stress is
applied.

The (g, T) phase diagram associated with vari-
ous models has been studied by renormalization-
group techniques, ' perturbation theory, ' high-
temperature expansions, "and Monte Carlo cal-
culations. " The models which mere studied mere
found to exhibit a relatively simple phase diagram
displaying a phase transition line with a tricriti-
cal point at a finite, nonzero g [see Fig. 1(a)].
In the present Letter, we show that in certain
cases, depending upon the symmetry of the sys-
tem and the field g, the phase diagram is more

u(%x +ps ) t'@& pn ~ (lb)

For stability of the free energy, we require u &0
and 2u+ v & O. The critical behavior associated
with this model has been studied by several au-
thors. " It has been shown that in d =4-& dimen-

complicated, as shown in Figs. 1(b) and 2. These
phase diagrams exhibit critical end points, tri-
critical, and fourth-order critical points. The
calculation is performed for an n =2 component
vector model with cubic anisotropy, which is the
appropriate model for the ferroelectric transition
in tetragonal" Tb, (MoO, ),. It is predicted that
the phase diagram of Fig. 2 should be observed
experimentally by applying uniaxial and shear
stresses in various directions in the x-y plane.
We believe that similar phase diagrams shouM
be observed in some of the physical systems
which dg not possess a stable fixed point, such
as' ' UQ„MnO, Cr, and Eu, by applying a mag-
netic field or a uniaxial stress in certain direc-
tions. We shall discuss this problem in a future
publication. "

Consider ann =2 component cubic model de-
scribed by the following Landau-Ginzburg-Wilson
(LQW) Hamiltonian:

0= fXd"x, (1a)

K = —2 r(qr, +pn ) —~a[(Vt'p, ) + (Vqpn) ]
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