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A nonlinear internal wave equation that describes stratified Quids with finite depth has
been studied. N-soliton solutions were found through Hirota's method. Although the equa-
tion tends to either the Korteweg-de Vries equation or the Benjamin-ono equation in the
shallow- or deep-fluid limit, respectively, the N-soliton solutions obtained tend to the
Korteweg-de Vries solitons in the shallow-Quid limit but do not tend to the Benjamin-
Ono solitons in the deep-fluid limit. Therefore, there is no smooth transition from one
kind of soliton to another with varying depth of the fluid.

It is well known that nonlinear internal waves
propagating along the interface of two fluids with
different densities can be modeled by two nonlin-
ear wave equations. ' ' In the deep-fluid limit,
they are described by the Benjamin-Ono equation,

q, + 2qq„+Hq„„=0,

where II is the Hilbert transform operator de-
fined by

aq(x) =—
i

q(z)
1T 4~00

a fluid of total depth D, the equation is'

y, + 2yq„+ B„J"q (x', t)G(x' —x)dx'=0,

with

G(x) = (c,/2w) f" dk[1 2kd—(cothkD)]e"".

This equation has a linear dispersion relation
given by

ru =kco[1 —skd(cothkD)].

In the deep-fluid limit, D-~, we get

(6)

while in the shallow-fluid limit, they are de-
scribed by the Korteweg-de Vries (K-dV) equa-
tion,

Uq+ 2UU„+ U„„„=0. (3)

U =k' sech'k(x -k't), (4)

the Benjamin-Ono solitons are algebraic (or ra-
tional),

q = 2e/[n'(x —vt)'+ 1].

A general property of algebraic solitons in the
absence of phase shift after collisions of two such
solitons. Therefore, algebraic solitons are truly
independent nonlinear normal modes of a system
which would show perfect recurrence instead of
an approximate one.

Recently, Joseph4 studied the problem of non-
linear waves in a fluid of finite depth. In case of
a thin thermocline located at the depth z = -d in

The latter equation (3) is the first equation known

to possess multisoliton solutions. The inverse-
scattering method' has been developed to obtain
its complete solution. The former equation (1)
does not yet have a complete solution. But a pole-
expansion method can be applied to obtain gener-
al N-soliton solutions. ' Unlike the Korteweg-de
Vries solitons that are of squared hyperbolic
secant type (nonalgebraic),

the Benjamin-Ono dispersion, ' and Eq. (6) would
reduce to (1) (if we disregard the irrelevant trans-
lation term and unimportant coefficients). How-

ever, in the shallow-fluid limit, B-0, we get

v - skc, (1 —3k'dD),

the Korteweg-de Vries dispersion, and Eq. (6)
would reduce to (3).

Joseph' claimed that he had found a single-sol-
iton solution of Eq. (6) which could be reduced to
either the Benjamin-Ono or the Korteweg-de
Vries solitons in the respective limit. It is there-
fore interesting to investigate his claim and see
whether N-soliton solutions also exist for Eq. (6).
In this paper, we shall demonstrate the existence
of multisoliton solutions of Eq. (6). However, we
shall also show that these soliton solutions, al-
though they tend to the K-dV solitons in the shal-
low-fluid limit'as expected, do not tend to the
Benjamin-Ono solitons in the deep-fluid limit.
There is no smooth transition as Joseph claimed.
On the other hand, the generalized solution that
would reduce to the Benjamin-Ono solitons in Eq.
(6) has not been found. In fact, it may not exist
at all. Nevertheless, as we shall demonstrate,
Eq. (6) possesses a rich set of regular solutions
including nonalgebrai. c soliton solutions, multi-
periodic solutions, and also algebraic soliton
solutions. To demonstrate these solutions, we

264 1979 The American Physical Society



VOLUME 43, NUMBER $ PHYSICAL REVIEW LETTERS 23 JUx.v 1979

rewrite Eq. (6) as a differential-difference equa-
tion

y, +2q q„—(C/S)y„„=0, (8)

where C and S are difference operators along the
imaginary axis such that

Cry�(x)

= cp (x +iD) + q& (x - iD) -=q, + cp,
i,Sy(x) = y(x+iD) —y(x - iD) = y, —y .

In so doing, we have again neglected some irrel-
evant terms and coefficients. In the following,
we shall concentrate on the solutions of Eq. (8).

In obtaining solutions of Eq. (8), we find Hiro-
ta's method' the most straightforward. Sub-
stituting

(10)

into (8), we obtain a bilinear equation for f:
&(f+, tf -f , g-f+) +-f.f-

~ ..+f- f+,,—2f+,.f
A single-soliton solution is then given by

f (x t) I+e2(kx+&ut+q)

where m=2k'cot2kD, and g is a real constant, or

y ~(x, t) = —ik {tanh[k(x+iD) +mt +g] —tanh[k(x —iD) + cut+ q]) = 2k sin2kD
cosh2 kx+vt+q +cos2kD

(12)

(13)

It is interesting to note that this soliton can move either to the left or to the right depending on the mag-
nitude of parameter k. %e note also that this solution approaches the K-dV soliton in the limit D -0:

1 4k'D
~-2k D sech k g+

However, if we were to try taking the D- ~ limit, we should not recover the Benjamin-Ono soliton. In
fact, there is no proper limit in this case. On the other hand, a periodic solution may be obtained by
the replacement k-(k, q-iq in solution (13):

y~(x, t) = —2K sinh2KD/[cos2(kx+9t +q) + cosh2KD].

In the D-0 limit, it approaches

q," 'v 2PD sec'(%x+(ot+g),

a singular periodic solution [note that (14) is regular] of the K-dV equation.
A different set of regular solutions can be obtained by letting g -g+ &iz and we have

2k sin2kD
yz = - ik(coth[k(x +ID) + &et + q] —coth[k(x - iD) + rut +q]] =

(14)

(15)

(16)

Its K-dV limit is

y, " ~=2k'D csch'{kx+~t+7)),

again a singular solution. The periodic solution is obtained similarly,

y~ = 2k sinh2KD/[cos2(Kx+ ~t +g) —cosh2%D]

It is also regular but attains a singular K-dV limit,

y," 'v 2PD csc'(Rx+(ut+q).

(18)

(19)

p. =-2(1/D)[(1/D)'(x+t/D+n)'+I] '

This is very similar to the Benjamin-Ono soliton (5) except that here the parameter 1/D is fixed while
the parameter v in (5) is arbitrary. It appears to us that the solutions obtained above are not general

(20)

In the Benjamin-Ono limit, both (14) and (18) approach constants, a trivial solution to Benjamin-Ono
equation, not the Bnejamin-Ono soliton (5). On the other hand, it is interesting to note that in the limit
k- 0, solutions (16) and (18) are reduced to an algebraic soliton:
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enough ro recover the Benjamin-Ono soliton. On the other hand, the above discussion certainly demon-
strates that K-dV and Benjamin-Ono solitons do not come from the same parent solution of Eq. (8).
They correspond to different branches of solutions. There is no smooth transition from one kind of
soliton to another just from variation of the fluid depth.

To find two-soliton solutions of Eq. (8), we let'

f2 = 1+exp[2(k,x + &,t + t),)]+ exp[2(k~ + u&,t + g,)]+exp(2[(k~+ k2)x + (m, + ~)t + tt, + q2+A~2]].

Substituting it into (11), we get

(to, —tos)sin'(k, —ks)D —2(k, -ks) to22(k, —k2)D

(&u, +&o,)sin'(k, +k,)D —2(k, +k,)'cos2(k, +k, )D '

(21)

(22)

where co, and w, are functions of k, and k, as giv-
en in (12). The many choices of k„k„ tt„and
g, would then yield various kinds of solutions: a
nonalgebraic two-soliton solution, a two-period
solution, ' a one-soliton, one-period solution,
etc. However, the two-soliton algebraic solution
does not exist in accord with the case of K-dV
equation. ' On the other hand, these solutions
will tend to legitimate K-dV soliton limits but not
the Benjamin-Ono soliton limit as in the case of
single solitons.

In general, for N-soliton solutions, we have

N N

f„= Q Q exp(p, ,8, ) g exp(2 t,tt&tA;, ),
P=0, 1 i=1

(23)

where 0; = 2k; x+ 2+, t + 2q;, and A;& are given as
in (22).

In conclusion, we have demonstrated the exis-
tence of multisoliton solutions for the internal
wave equation with finite depth. Although Eq. (8)
tends to either the Korteweg-de Vries or the Ben-
jamin-Ono limit as D-0 or D- ~, the soliton
solutions we obtained have only the Korteweg-de
Vries limit. Therefore, we do not have a smooth
transition from one kind of soliton to another with
varying fluid depth.
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