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We give the normahzed leadixg asymptotic Q
2 dependence of the pion form factor in

quantum chromodynamics: I"~(Q ) 2 &„-—2f~2/bQ2lnlQ2I, where f~is the pion decay con-
stant and b = (11-3')/16~'. Up to non-leading-logarithmic corrections, this is equiva-
lent toI „(Q2) o2 ~„-8~a., (Q )f~2/(-Q~). These results are obtAined by solving the light
cone pion Bethe-Salpeter equation in quantum chromodynamics to leadirg-1ogarithmic ac-
curacy.

In this Letter we present the solution of the
quantum-chromodynamics (QCD) pion Bethe-Sal-
peter (BS) equation on the light cone. We normal-
ize the resultant light-cone pion BS wave function
to give the correct pion decay rate. This then
enables us to give the asymptotic behavior of the
pion electromagnetic form factor,

E,(Q')os,=„-2f, '/bQ'in I Q'I. (1)

Here b = (11 —-', Nz)/16m' and f, is the pion decay
constant. (~132 MeV). To the leading-logarithmic
accuracy of our calculation, this is equivalent to

(2)

Here we sketch the derivation of these results
in momentum space, some aspects of which have
been previously given by Jackson. ' Details of
this calculation and aspects of the solution of the
BS equation not essential to obtaining (1) will be
given elsewhere. '

The pion BS wave function' can be decomposed
in terms of four Lorentz-invariant functions
q(P k k'):

4(P,k) = fe""d x(O~T[u ', (x)d (- —,'x—
)]~ m')

=y,b, P'+ 'q, [ttt, P']-+q, +q, d&1,

where P is the pion momentum and 2k is the rel-
ative momentum of the q and q. The BS equation
for 4 in terms of the bvo-particle irreducible
kernel K(k„k» l„l,) is shown schematically in
Fig. 1(a). Our aim here is to find p, (P k, k') when~

both P.k and k' are large and spacelike, since
this determines the asymptotic behavior of F,(Q').
Thanks to the asymptotic freedom of QCD, when
all the invariants are large and spacelike the
leading behavior of the kernel is given by one-
gluon exchange with a running coupling constant. '
However, the loop integral, d E, involves regions
for which l,' and/or l,' are on the order of hadron
masses. Nonetheless, as long as the true kernel
is not anywhere more singular than the one we
use, our result is correct to leading logarithms.
Since confinement presumably implies that the
true quark amplitudes vanish more rapid1y at
large distances, ' we can reliably calculate to
leading-logarithmic accuracy using this one-
gluon-exchange with running- coupling-constant
approximation to the kernel. ' Working to this ac-
curacy we are required by consistency to replace
n, (k') in the asymptotic kernel by (4mb ln~k') ) ',
since it is misleading to use [4mb ln(~k'~/A')] '
and identify A with something measured, e.g. , in
electroproduction: unless the next-to-leading
corrections are computed, A has no meaning. '

Only the "y,-odd" pieces of the wave function,
y, and y4, contribute to the pion decay constant

f„(y, and cp, contributions are multiplied by the
trace of an odd number of y matrices [Fig. 1(b)]]
and make leading contributions to the large-Q'
form factor. In the gauge in which the asymptotic
kernel is

&""=—t [g""—(1 —) ) l "l"/1']/hi'inll'I,

they satisfy, to leading-logarithmic accuracy,

(-k'V, - 'P kV,)P'+(2P ke,-+k'V. )N
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Solution of (3) is best accomplished using a spectral decomposition, '

e, ,(I', p I)= g, 4($, t)d$dt
(k'-2)p 0 —t+te)' ' (4)

Substituting (4) into (3) leads" to differential equations for the g, with solutions of the form

g (m)(( t) f (m)(g)/(int)&+a~ (5)

The solutions only exist for particular values for 5, 5 = v4([1- 2/m(m+ 1)]/(11 —zNz)) —25~, where
5~=&A/(11 —&Nz) is the fermion anomalous dimension. For our application we will only need the lead-
ing solutiong. ,('), for which (), =- 2hz. The corresponding f( 's are, e.g. ,

f,('"~f,") 1-(2&)', f,")+&f.")-1-6(2&)'+5(2t)',

f,(' + $f, ' o: 1 —15(2$)'+ 35(2$) —21(2$)',
(6)

with f,( )(() given in terms of these by

' f,( '(h)dh» ~a [f,( )(h)+h f,(~)(h)]dh

(h —&)' 6m'5 b(&' g)-,g, (& -h)
Since Eqs. (3) are homogeneous, only the relative normalizations of the f, 's are determined so far
Note that in a gauge with no fermion anomalous dimensions (where the truncated and untruncated wave
functions have the same anomalous dimensions) 5, = 0, as required by the partial conservation of the
axial vector current, dy"y'u.

The dependence of f, on the wave functions is [see Fig. 1(b)] given by

—~~f (2„)4 (Pi+ ~ 1 9'4) (6)

A little algebra shows that only the m = 1 solution [Eq. (6)] makes a nonvanishing contribution to f,
(higher-m solutions oscillate in $ and integrate to zero). This then gives, for the leading contribution

&/2+k=k~

p/2-k=kz

p/2+k+4=X, p/2+k=k~

p/2-k-X =X@ p/2-k=kz
k, p'k~

ig (X~)y+T~

P
Tf-~~p+p )F(z )-——

Q

p/2+k p'/2+k'

K
P

Q ~co

Q

p/2+k p/2+k'

P

p/2-k p'/2-k'

(c)

FIG. l. (a) Pion Bethe-Salpeter equation for 4(p ~ k, k ), (b) pion decay constant f~ in terms of i, and (c) pion
form factor in terms of 4.
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(9)

nels) and the infrared cutoff .induced by confine-
m'ent. The QCQ„. acmic parameter presumably is
of the same order 6f magnitude ajj for deep in-
elastic scatterjng, whereas tbe infrared @gale
ought to be related to the pion's size. Since for
the largest available Q'= (3.1)' GeV', 1n[Q'/(0. 3)j
=4.V, whereas ln(Q'/1') =2.2, the natural level of
error in using Eq. (2) at present Q' is greater
than a factor of 2. furthermore, although the
neglect of the subasymptotic pieces of the wave
function [m &1 jn Eqs. (5) and (6) j is mathemati-
cally correct for sufficiently large Q', for our
Q"s this Inay be a poor approximation since they
are subasymytotic by only a fractional gower of
lnQ'. A means:of obtaining the relative normali-
zations of the f ~ ~'s for m & 1 would be very use-
fuj phenomenojogjcItIIly. ' Nonethejesa, jt is rele-
vant and jnterestjgg1 that Eq. (2) is accurate to
better than an or'der of magnitude: Th) largest
(apacelike) Q' data are for QI = -4 GeV' and give"
for "cI,," Q'~E„(Q',) -~8IIf,'=0.9~0.2 [and for
timelike Q'=($. 1 GeV)', Q'J E,(Q') I8rrf, '=1.8", ,'
(Ref. 11)].

+e close vitb a few remarks. Our result, Eq.
(1), while not of great experimental relevance at
preserit, is nonetheless importa. nt in that it con-
firms the power dependence of E,(Q ), 1/Q', pre-
dicted by Brodsky and Fhrrar, 'a while showing
how QCK) can be used to compute correctly the
leading logarithmic behavior of certain exclusive
hadronic processes. @CD was crucis, l in several
w'hays in this analysis: without asymptotic free-
dom the ladder appjoxi~ation would not neces-
sarily hav'e givgp 1ekding-logarithmic accoracy.
Furthermore, confsne~ent served to decxease
the uncertainty coming from nonperturbative in-
frared 1egions. " Finally and probably most im-
portantly, if the wave functions had not had the

E,(Q'.) = P,'/bQ' ln I Q'(.
(p ~ +4

! I

The gauge dependence, still evident in Eq. (9),
cancels upon integration over t when evaluating
Eq. (10) in termIj of the spectral representation.
The presence' of the factor f,' is not surprjiing,
Lng from Born-diagram calculations the factor
I/O-, o.,(Q') iq famj lier. ,IIowever, one might
wonder why"the 1/b factor does not disappear
h(re, illto f„[F1/. $(c)]:,It does Ilot because of a
fIactor 1'/$ betw'een g~ and g,. + $g, [Eq. (V) ].

%e show in Ref, 2 that Eq. (1) js valid to lead-
ing-logarjthmjc accuracy for botjl spacelike and
tjmylike (Q', &0 y, ud &0, respectively, in our
yetrIC), 'in sign aIj Well as. functional dependence
on 1 Q't. Altho ugh the sjgz;of E„|Q') is only ex-
p&rjmentally determined at Q' =0, it is signifi-
c'ant that for large spacelike Q' we find E,(Q')
hajI the same sign (&0) as jt Q' 0. Further-
more, . our result E,(g) &0 for large timelike Q'

js consistent with the negative value of ReE„(Q')
alcove the p resolIance [asymptotically E„ is
dq~inated by Her„ to Ieiding-logarithmic ac-
curacy. , and so Eq. (I) ia actually for ReE„(Q ) ].
Thus there is no need for any zero in

~
E„(Q') ~'

ip the spa, celike region, or in the leading asymp-
totic contgjbutjon to. (E,(Q') (' in the timelike
rsgiOn.
. , As Ijtreased above, Eq, (1) is only experimental-

(y significant when Q is so large that in the ex-
pression -2f „'/bQ jn(Q'/A') it is irrelevant what
ejjojce is made-for A. In our calculation two

mechanisms y.re responsible for generating a
scale, A: ttje renormaljzatjon of @CD (this ap-
peILrS jn higher-order contributions in the ker-

V&LUMg 4$q NUhgpIR $. PHYSIC AI. REVIKW LKTTKRS

to SI+.(S4:

gj(h, i)+ 4g, (4. i) „4iv'&,f.(1-, 4~*)/(jni)"'I ~

'1 I

Since the BS.equation gave the relative normalization of g, and g„ the leading piece of the wave fImc
tion is now c&mpletejy specified, 5, is gauge dependent and in (9) we have taken it smail but positive

0 in oz der that. all the integrala are well defined.
"fhjj new ph. ysjcs imergei when we calqujate E,(Q') for large Q', as shown in Fig. 1(c). A, priori the

tejevant 'kernel. involves ajj two-particle irreducible gluon exchanges. However, the actual QCD wave
functions (4);-(V) fall off ao slowly in jjIe (four-momenta)' of their legs that the larger phase apace as-
spqjated with large Q,

~ "wins" and calculation shows that the- intermediate quark lines tend to have

)aisle iIp:. "this ineans that to leading-logarithmic accuracy only the lowest-order kernel ia required,
aa shown jn Fig. I(c). TjIen we have

P'„(Q'). '-. — —. — - l~y, (k' P 0) [2Q'9I ~(A'" P' k') i(Q'+4P l)y, *(k",P' 0')].$i d'f

Qg ~ y 4a

At this point we use Eq, (4) (the higher-m solu-
tions give nog). eading coptributions in Q ) .to ob-
tain from Eq. .{16)the central result, Eq. (1):

, ~
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"extra" logarithmic damping oD the light cone
provided by asymptotic freedom, and if the spin
structure (the relation between g, and g,) had
been different, f, could not in general have been
used to normalize E„(Q'). Thus Eq, (I) in prin-
ciple provides a sensitive test of @CD.
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&0. p,. Pirrar and D. R. Jackson, ~ublished.
This B8 wave function is evidently not QCD gauge in-

variant since local color gauge invar&~nce means that
the definition of color can be independently eh~~ed at
kx and -kx. One could work instead with the gauge-1n-
variant obl'set

&01 r[s(kx) exp' f A di)d( kn-)]l &)
(where 8 is a matrix in color space); however, in that
case one must ~~aiyse more complex kernels involving
incomtua and outgo1ug gluons. 8inoe the final physical
results are ga~ge ixLdependent we have chosen to em-
ploy the standaxd wave function, although it's anoma-
lous dimensions are not in general gauge invariant [see
Eq. (8)]. Ence the two descriptions become equivalent
as x 0, their leading &2 dependence is the same.

4Since-the pion pole is explicitly removed, mo de~~er-
ous-effects are expected to be induced by the continua-
tion of (k, +%2)2~p2 m~'.

SThis js confirmed by perturbative studies of QCD
[J.M, Cornwall and G. Tiktopoulos, .Phys. Rev. Lett.
85, 888 (19V5)] which ind1cate that amplitudes involving
colored states are exponential damped as those states
approach "mass shell."

Note, however, that obtaining nonleading logarithms
in C and F „(q ') is much more subtle: It is uot sufficient
to treat the kernel to higher order in u, (4') unless it
can be shown that the uncomputabie cont&butions from
the Iow-momentum region in the loop integral are less
bnportant.

We are grateful to Douglas Ross for discussions of
this point.
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