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We give the normalized leading asymptotic Q@ 2 dependence of the pion form factor in
quantum chromodynamics: F,@Q?g757s— 2/ %/bQ%1In|Q?, where f, is the pion decay con-
stant and b =(11—%N,)/1672. Up to non—leading-logarithmic corrections, this is equiva-
lent to F (@2 g=15 810, @2f 2/ (—Q?. These results are obtained by solving the light-
cone pion Bethe-Salpeter equation in quantum chromodynamics to leading-logarithmic ac-

curacy.

In this Letter we present the solution of the
quantum-chromodynamics (QCD) pion Bethe-Sal-
peter (BS) equation on the light cone. We normal-
.ize the resultant light-cone pion BS wave function
to give the correct pion decay rate. This then
enables us to give the asymptotic behavior of the
pion electromagnetic form factor,

Fr@Q3¥5z=7%— 2/ +2/bQ%In Q2. (1)

Here b =(11 - 2N;)/167* and f; is the pion decay
constant (~ 132 MeV). To the leading-logarithmic
accuracy of our calculation, this is equivalent to

F,@%)qz=7= 81 @%)f+*/(-Q%). 2

Here we sketch the derivation of these results
in momentum space, some aspects of which have
been previously given by Jackson.! Details of
this calculation and aspects of the solution of the
BS equation not essential to obtaining (1) will be
given elsewhere.?

The pion BS wave function® can be decomposed
in terms of four Lorentz-invariant functions
(P k,k?):

&(p,k)= fe"""d"x(O|T[u%(x)3 (=2 x)]l 7%
=vs{@, #+30,[K, 9]+ 05+ 0,8}

where p is the pion momentum and 2% is the rel-
ative momentum of the ¢ and g. The BS equation
for @ in terms of the two-particle irreducible
kernel K(k,,k,;1,,1,) is shown schematically in
Fig. 1(a). Our aim here is to find ¢;(p*k,k?) when‘

(=k%0, = 3D k@) F + (2D k@, +E%0,) ¥
4i ¢ d¥ 1
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both p+ and k? are large and spacelike, since
this determines the asymptotic behavior of F,(Q32).
Thanks to the asymptotic freedom of QCD, when
all the invariants are large and spacelike the
leading behavior of the kernel is given by one-
gluon exchange with a running coupling constant.?
However, the loop integral, d*, involves regions
for which I,% and/or 1% are on the order of hadron
masses. Nonetheless, as long as the true kernel
is not anywhere more singular than the one we
use, our result is correct to leading logarithms.
Since confinement presumably implies that the
true quark amplitudes vanish more rapidly at
large distances,” we can reliably calculate to
leading-logarithmic accuracy using this one-
gluon-exchange with running-coupling~-constant
approximation to the kernel.® Working to this ac-
curacy we are required by consistency to replace
a,(k?) in the asymptotic kernel by (47b In|2?)"?,
since it is misleading to use [ 47d In(|%2| /A%)]*
and identify A with something measured, e.g., in
electroproduction: unless the next-to-leading
corrections are computed, A has no meaning.”
Only the “y;~odd” pieces of the wave function,
¢, and ¢,, contribute to the pion decay constant
fr {9, and ¢, contributions are multiplied by the
trace of an odd number of ¥ matrices [Fig. 1(b)]}
and make leading contributions to the large-Q*
form factor. In the gauge in which the asymptotic
kernel is

KFV=—i[g"V = (1= \) 117 /1?] /b121n| 17,

they satisfy, to leading-logarithmic accuracy,

l/><p1 +((1+>\)lé+(3-->\)‘l/+(1-)\)—2%i V)%i\- (3)
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Solution of (3) is best accomplished using a spectral decomposition,®

1/2 bl gl.4(‘£:t)d£dt (4)
Ledo (R2=28pek—t+i€)®”

®, 4(k?,p k)=
Substituting (4) into (3) leads'*® to differential equations for the g; with solutions of the form

&M, )= £ (£)/(nt)+om, (5)

The solutions only exist for particular values for 5, 6,=3{[1-2/m(m +1)] /(11 - -§-N,)} - 20,, where
6x=%1/(11 - ¥ N,) is the fermion anomalous dimension. For our application we will only need the lead-
ing solution g;", for which 8, =-26;. The corresponding f™’s are, e.g.,

fO4EF O w1 (267, O +EfD <1-6(EF+5(20),

6
fl(s) + §f4(5) ol -15(2£)2+35(2£)* - 21(25)6, ©)
with £, (£) given in terms of these by
f‘1/2 4 (x)dx - 1 12 [ £, (x) +x 7,0 (x)]dx ™
-1/ & =E) 6m26,,b (£2 -1) -1/2 (&£-x)

Since Eqgs. (3) are homogeneous, only the relative normalizations of the f,’s are determined so far.
Note that in a gauge with no fermion anomalous dimensions (where the truncated and untruncated wave
functions have the same anomalous dimensions) §,=0, as required by the partial conservation of the
axial vector current, dy*y%u.

The dependence of f, on the wave functions is [see Fig. 1(b)] given by

d'k ok
fr= 12./‘(27,)4 (‘Px z ‘P4> (8)
A little algebra shows that only the m =1 solution [Eq. (8)] makes a nonvanishing contribution to f ,
(higher-m solutions oscillate in ¢ and integrate to zero). This then gives, for the leading contribution

p/2+kek p/2+kH=l, p/2+kek, ig(£%Ta
DM e, B)
| ] kS prke@
p/2-k=k» p/2-k-£=4, p/2-k=kp
(a)

P ey
m-- = ipufr

(b)

Q
p/2+k p/2+k' p/2+k ¢ p/2+k'

L I e

p/2-k p/2-K —y

(c)

FIG. 1. (a) Pion Bethe-Salpeter equation for &(p-%,%?), (b) pion decay constant f, in terms of &, and (c) pion
form factor in terms of &.
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[ 2

to £ e ' . _‘ ,
- gk ¢)+€gg(£,> - 45128, f o(1 - 4£2)/(1nt)“51 ' ' n (9)

Since the BS equa.tlon gave the relative normahzatmn of g, and g,, the 1eadmg piece of the wave func-
tion is now completely specified. 9, is gauge dependent and in (9) we have taken it small but positive
~+0 in order that all the mtegrals are well defined. .

“The new physxcs emerges when we calculate F.(@ for large @ as shown in Fxg. 1(c). A priori the
relevant ker'nel mvolves al two-particle irreducible gluon exchanges. However, the actual QCD wave
functions (4)-(7) fall off so slowly in the (four-momenta)? of their legs that the larger phase space as-
quated with large k2 “wing” and ‘calculation shows that the intermediate quark lines tend to have
large kA2 Thxs means tha.t to leadmg logarithmic accuracy only the lowest-order kernel is required,
as shown in F}g. 1(c) Then we have

-7 d'*l
~ “(Qz)*":::'pp (@n)*

At this point we use Eq. (4) (the higher-m solu- |
t;ons give nonleadmg coptributions in @) to ob-

lz¢4(k2’p k [2Q2¢1*(kl2,p/ °k.f) +(Q2 +4P 'l)'%*(k ’27 P'- 'k’)]- (10)

nels) and the infrared cutoff induced by confine-

tain from Eq. (10) the central result, Eq. (1): ment. The QCQ,scale parameter presumably is
2 , of the same order of magnitude ag for deep in-
— -2, /bQ ln[Qzl. elastic scattering, whereas the infrared scale
» ’ ought to be related to the pion’s size, Since for
The gauge dependence, still evident in Eq. (9), the largest available @*=(3,1)? GeV?, In[@?/(0.3)3
cancels upon integration over ¢ when evaluating =4.7, whereas In(Q?/1%) =2,2, the natural level of
Eq. (10) in terms of the spectral representatjon. error in using Eq. (2) at present @? is greater
The presence of the factor f .2 is not surprising, than a factor of 2. Furthermore, although the
and from Born- d1a,gram calculations the factor neglect of the subasymptotic pieces of the wave
1/b~a(Q?) is familigr. However, one might function [m >1 in Egs. (5) and (6)] is mathemati-
wonder why‘the 1/b factor does not disappear cally correct for sufficiently large @?, for our
here into f , [Flg 1 (e)]". It does not because of a ©%'s this may be a poor approximation since they
fb.ctor 1/b between & and g, + £g, [Eq. ™Ml are subasymptotic by only a fractional power of
We show in Ref, 2 that Eq. (1) is'valid to lead- In@?. A means of obtaining the relative normali-
ing- loga.rlthm;c accuracy for both spacelike and zations of the f (™)’ for m 21 would be very use-
timelike @ (@*<0 and >0, respectively, in our ful phenomenologicg.lly Nonetheless, it is rele-
metric), 'in sign as well as functional dependence vant and mterestmg that Eq. (2) is accurate to
on |Q?]. Although the sign of F,(Q? is only ex- better than an order of magnitude: Thé largest
perimentally determined at @ =0, it is signifi- (spacelike) @? data are for Q%= -4 GeV? and give'®
cant that for large spacelike @ we find F,(Q? for “o,,” ~@Q*| F.(@*|87f,2=0,9+0,2 [and for ‘
has the same sign (>0) as at @=0, Further- timelike Q’ (3.1 GeV)2 Q| F,(@%)|8nf,2=1,6L33
mere, our result F,(¢?) <0 for large timelike @ (Ref. 11)].
is cons1stent with the negatwe value of ReF, (Qz) We close with a few remarks, Our result, Eq.
above the p resonance [asymptotically F, is (1), while not of great experimental relevance at
dominated by ReF, ta leading-logarithmic ac- present, is nonetheless important in that it con-
curacy, and so Eq. (1) is actually for ReF(@%]. firms the power dependence of F,(Q?), 1/@?, pre-
Thus there is no need for any zero in | F(@) ]2 dicted by Brodsky and Farrar,'? while showing
in the spacehke region, or in the leading asymp- how QCD can be used to compute correctly the
totic contribution to. | F,(@?) [? in the timelike leading~logarithmic behavior of certain exclusive
region. - ' hadronic processes. QCD was crucial in several
. As stressed above, Eq. (1) is only experimental- ways in this analysis: Without asymptotic free-
ly significant when @* is so large that in the ex- dom the ladder approximation would not neces-
pression —2f ,,2/bQ2hi(Q2/A2) it ig irrelevant what  sarily have given ledding- logarithmic accuracy.
choice is made-for A. In our calculation two Furthermore, confmement served to decrease
mechanisms are respons1b1e for generating a the uncertainty coming from nonperturbative in-
scale, A: the renormalization of QCD (this ap- frared regions.!® Finally and probably most im-
pears in higher-order contributions in the ker- portantly, if the wave functions had not had the
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“extra” logarithmic damping on the light cone
provided by asymptotic freedom, and if the spin
structure (the relation between g, and g,) had
been different, f, could not in general have been
used to normalize F,(@?). Thus Eq. (1) in prin-
ciple provides a sensitive test of QCD.
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%This BS wave function 1s evidently not QCD gauge in-
variant since local color gauge invariance means that
the definition of color can be independently changed at
4x and ~3%. One could work instead with the gauge-in-
variant object

(0l Tl ) expti [, A+ d1)A (= )] | 7)

(where A is a matrix in color space); however, in that
case one must analyze more complex kernels involving
incoming and outgoing gluons. Since the final physical
results are gauge independent we have chosen to em-
ploy the standard wave function, although it’s anoma-
lous dimensions are not in general gauge invariant [see
Eq. (6)]. Since the two descriptions become equivalent
as ¥ —~0, their leading k? dependence is the same.

4since the plon pole is explicitly removed, no danger-
ous-effects are expected to be induced by the continua-
tion of (k, +ky)2=p2—~m,>2

5This is confirmed by pertu:rbative studies of QCD
[J. M. Cornwall and G. Tiktopoulos, Phys. Rev. Lett.
35, 338 (1975)] which indicate that amplitudes involving
colored states are exponentially damped as those states
approach “mass shell.”

x/2

®Note, however, that obtaining nonleading logarithms
in & and F (g9 1s much more subtle: It is not sufficient
to treat the kernel to higher order in o, (%% unless it
can be shown that the uncomputable contributions from
the low-momentum region in the loop integral are less
important.

"We are grateful to Douglas Ross for discussions of
this point.
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