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range of 5x107 to 2X10% cm™3, and assuming that
the neutral-hydrogen gas velocity, v, in the core
of the plasma is in the range 0<v,°<v,/2, we ar-
rive at 40 msec <7,%(0)<300 msec. Since charge
exchange transports ion energy as well as ion mo-
mentum, we must also have 7,% > 75;~ 20-40
msec. Thus, charge exchange falls short of éx-
plaining the damping by a significant, but not
large, factor. The other two processes, ripple
damping and perpendicular viscosity, are much
slower by comparison. A simple estimate gives
confinement times 2X10% and 2.5 sec against
these two processes, respectively.

More detailed measurements of the radial pro-
files of the rotation—by utilizing lines of various
ions with ionization potentials in the 600-1300-eV
range—appears to be feasible by the Doppler -
shift method. Such measurements, especially
when including the decay of the rotation after the
end of the injection, or during intermittent injec-
tion, should allow quite detailed interpretation of
the local plasma dynamics under various condi-
tions.
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Experimental and numerical results are compared with new theoretical results describ-
ing soliton propagation and deformation in a strongly magnetized, plasma-loaded wave-

guide.

Experimental results concerning nonlinear
waves in plasmas have in several cases demon-
strated a striking agreement with propagation

characteristics predicted by the Korteweg—de
Vries (KdV) equation. Thus Ikezi, Taylor, and
Baker! have demonstrated soliton collisions and
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recurrence phenomena in experiments with ion
acoustic waves. Propagation of KAV solitons
was also demonstrated for electron waves in a
magnetized, cylindrical, plasma-loaded wave-
guide.? The overall agreement between experi-
ment and theory for these cases has stimulated
the interest for considering even finer details
obtained by modifying the KdV equation in various
ways. Particular attention has been paid to find-
ing an adequate representation for the Landau
damping. We considered the propagation of non-
linear pulses in a strongly magnetized, plasma-
loaded waveguide.? A kdV equation appropriate
for this system and modified to take into account
the effect of resonant particles was derived. By
means of a recently developed perturbation-the-
ory® solutions for this equation were obtained and
compared with experimental results.

The experiment was carried out in a cesium
plasma produced by surface ionization on a hot
(~2000 K) tantalum plate of diameter 3 cm. The
120-cm-long plasma column was confined radially
by a magnetic field of 0.4 T and surrounded by a
grounded brass cylinder with inner diameter 4
cm. Plasma densities were 10°~107 cm™ and T,
~0.2 eV. Pulses were excited by a 30-cm-long
brass tube terminating the waveguide. This setup
is particularly well suited for exciting large-
amplitude pulses.*® Potential variations were
detected by a Langmuir probe connected directly
to a high-impedance capacitive amplifier (1 Mg,
2pF). A slot in the waveguide permitted 85-cm
axial movement of the probe. A numerical simu-
lation of the experiment was performed using a
particle-in-cell (PIC) method. A leap-frog
scheme was applied for the movement of 5x10*
particles. At each step, the electric potential,
¢, was calculated from Poisson’s equation in a
form appropriate for the present problem, ¢,,
-¢/a®=e(n —ny)/€, with a=(plasma radius)/2.4
and with », the density of the immobile ion back-
ground. Only the lowest-order radial eigenmode
was considered. The accuracy of the program
was checked by calculating the total energy at
each time step. Within ~20 plasma periods, 27/
w,, energy was conserved to 3%. The program
is described by Turikov.®

In the theoretical analysis we employ a modi-
fied KdV equation of the form’

aU au U 9N
St—+[co+a(%co)U] a—x—'*'ﬁgx—?l"z"%cos# (1)

with C?=w,2a®+3v,%/2, v,>=2T,/m, U=-eq/m,

B=3Co*/w,% «=0.72 originates from the expan-
sion in radial eigenmodes.*® The number of reso-
nant particles, Ng, is given by

NR=,3—0/;es[f<x,v, ) - £ dv,

where f and f, are perturbed and unperturbed
electron velocity distribution functions, respec-
tively, while n,= ffo dv. The subscript “res”
indicates integration over the resonant particles.

In order to investigate the modification caused
by N of the soliton solution to the ordinary Kdv
equation we consider the right-hand term of Eq.
(1) as a perturbation and apply a recently devel-
oped theory?® to the soliton solution

U= Uy(f)[sech?®([x —x,(8)]/6(8))+w(x, D],

where the time variation of the amplitude, U,,
and the width, 6, are controlled by the perturba-
tion. The term w(x, t) accounts for a deformation
of the soliton. When evaluating N we note that
there are two characteristic time scales for the
problem: (i) a time of resonant interaction 7p
=06/(2 Uo)‘/z and (ii) an unperturbed soliton time?
defined as 7,=8C,6/U,.

For t «< T4 we derive®?®

Ne=(fo'/n)P |~ ax' Uk’ ,t)(x" —x)"1, (2)

where f,’=df,/dv at v=v,,, i.e., a term similar
to the one derived by Ott and Sudan® for a related
problem. For {> 7, we obtain

(1 x(x.4)V2
Nam =0 [ st )

—F([J.-—V(nz"')()l/z)]sgn[xl-xo(t)]’ (3)

where the following dimensionless quantities are
introduced: v=(2U,/v )Y, u=v,,/v5 vy=C,
+Uy/2C,, Xx, 1) =Ulx,)/U,, and F(v/v ) =fy(v)vy/
ny. In the following we shall assume that f,(v) is
Maxwellian, Rather than present a full deriva-
tion of (3) we shall give later a simple, illustra-
tive physical interpretation of one of our main re-
sults concerning soliton damping derived from
this perturbation term.

We now note® that the influence of the perturba-
tion on the nonlinear evolution will be important
only for ¢>7,. Since 7,/T,~U,Y2/C,<«<1, how-
ever, we considered only (3). In order to apply
the perturbation analysis,® we bring Eq. (1) into
the standard form o, — 63y, + ¢ ¢ e = €R[¥], €R[y]
=234 ,%/38N /8L, We have used the substitu-
tions x — Cot = B/%¢ and U= -4C,BY%y. The main
results may be summarized as follows: An ap-
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proximate asymptotic solution may be written as
V=9, - 2k*w(z, t) where P =~ 2k*sech?z with z=«
= k(f)[ £ - £,(1)], where the amplitude varies (in
our case, damps) according to

%= —f; f_zR[zps]sechzz dz.
The function w(z, ¢) accounts for the deformation
of the soliton accompanying the damping. In gen-
eral, it consists of a plateau with length propor-
tional to ¢ which forms behind the soliton. Be-
hind the plateau, an oscillatory, rapidly damped
tail develops. An important parameter for the
plateau is

(I=(4K5)'1f_: R[4, ]tanh?z dz.

The sign of €q gives the sign of the plateau. The
amplitude of the plateau is given by w_ = —eq.
Applying these results to (1) and (4) we find the
damping®

dv/dt=(8p*/7 V)A(L, V) (4)

and the plateau amplitude

U_=(Up4p*/v))[B(p, v) = A, V)], (5)
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FIG. 1. Oscilloscope traces showing soliton damping
and the developments of the plateau and an oscillatory
tail. ¢, is the applied potential.
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where

Alp, v) ‘f‘z(fuwdo(o— W2F(0)

+f“’l-vdo(o— u)"’F(o))
and

B(u,v) =2(f"p+udoF(o) + f"“—ydoF(a)> .

The remaining quantities were defined in connec-
tion with Eq. (4). Note that in our case sgn(eg)
=sgn(y,).

Figures 1-2 and 3-4 show experimental and
numerical results, respectively. Experimentally
(Fig. 1) we observe the development of the pla-
teau with the right sign and oscillatory tail in
full qualitative agreement with theoretical pre-
dictions. Also the soliton damping (Fig. 2) is in
qualitative agreement with theory. In order to
increase C, (i.e., decrease the number of reso-
nant particles) these measurements were car-
ried out at a plasma density somewhat higher
than in the experiment by Saeki ef al,* The elec-
tron hole discussed in that work®* cannot be de-
scribed by a simple KdV equation as (1) and it is
irrelevant in the present connection. In the nu-
merical simulation, where the input parameters
are well defined, we are able to make an accu-
rate numerical comparison, Also here we ob-
serve the formation of a plateau (Fig. 3) with
length proportional to ¢£. The electrons reflected
by the soliton are seen on the phase-space dia-
gram. The measured ratio U_/U, is compared
with theory in Fig. 4(a). Very small amplitudes
are not included because (i) the inherent shot-
noise in the PIC model makes amplitude esti-

T T T T T T
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FIG. 2. Soliton damping for different initial ampli-
tudes.
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FIG. 3. Numerical results showing the evolution of
the perturbed soliton shown in a frame of reference
moving with C,, where CyV y=4.14; (a) phase space,
(b) normalized potential.

mates rather uncertain, and (ii) the criterion ¢
>T, becomes unobtainable within the time span
of the code. Finally, in Fig. 4(b), we investigate
the temporal damping of the soliton. By varying
the plasma density in both experiment and simula-
tion we find that when C,/v, =2 the plateau is no
longer fully developed®® and appears rather like
an evanescent “tail.” Obviously the number of
reflected particles becomes too large to be cor-
rectly described by a perturbation theory. We
note, however, that in spite of the disappearing
plateau, the damping continues to show good
agreement with theory. Krivoruchko et al.'°
have observed soliton damping and obtained a
theoretical expression valid for very small am-
plitudes. Such a result can also be obtained from
our Eq. (4) by a series expansion of the integrand
in A(y, v). h

Our conclusions may be summarized as follows:
Experimental results are in full qualitative agree-
ment with theory. In particular, we note that
large pulses have a large damping rate, as ex-
pected (Fig. 2). We are unable to make a precise
numerical comparison with the experimental re-
sults since the solitons in our setup move “up-
stream,” towards the ionizing plate, and we are
not able to measure the electron velocity distribu-

twp/2m

FIG. 4. (a) Relative plateau amplitude U./Uj as a
function of normalized soliton amplitude, from the si-
mulations. (b) Soliton damping, for different initial
amplitudes. Full lines indicate theoretical dependence.

tion function in this direction. This information
is essential to the theory. We note, however,
that by assuming a Maxwellian distribution with
T,=0.2 eV and determining the absolute soliton
amplitude by measuring its Mach number, we
find agreement within a factor 2; see full line
and crosses, Fig. 2. The numerical simulations
(Figs. 3 and 4) give a fully satisfactory quantita-
tive agreement with theoretical results. We may
thus conclude that our modified KdV equation
together with the applied perturbation analysis
is capable of describing even the fine details of
the experiment in question.

This work was initiated at the Chalmers Sym-
posium on Solitons, G&teborg, Sweden. The
authors thank Professor H, Wilhelmsson for
arranging this meeting and for his hospitality.
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The positions of quantized vortex lines in rotating superfluid helium have been recorded
using a photographic technique. The photographs show stationary arrays of vortices. The
observed patterns are in good agreement with theoretical predictions.

Since the work of London' it has become an ac-
cepted notion that superfluidity is a manifestation
of quantum mechanics on a macroscopic scale.
Pursuing this idea in a quite literal way, Onsager
and Feynman?® tried to deduce the qualitative fea-
tures of a single macroscopic wave function, ¥ (r),
which would describe the superfluid state. They
concluded that the superfluid velocity v, was pro-
portional to the gradient of the wave function’s
phase and that the nodes in ¥ () marked the posi-
tion of vortex lines with circulation quantized in
units of #/m (h is Planck’s constant and m the
mass of the helium atom).

This paper reports observation of stationary
quantized-vortex-line patterns in rotating He II.
These patterns display the nodal structure of the
stationary states of #(») and provide a vivid dem-
onstration of the long-range coherence of the su-
perfluid state.

The basic technique® to record the line’s posi-
tion utilizes electron bubbles (ions) trapped in
the vortex core. This trapped charge is extract-
ed through the fluid’s meniscus (where the line
meets the free surface) and imaged onto a phos-

phor screen. The light emanating from this phos-
phor is conveyed (via coherent fiber optics) to
room temperature, amplified in a low-light-level
television camera, and recorded on a single
frame of a movie film. Figure 1 shows a block
diagram of the apparatus and the caption de-
scribes the essential points.

Since it takes about 10 sec to charge the vortex
lines, we can record the vortex pattern about 6
times each minute. In a typical experiment the
steady-state features of a pattern are enhanced
by making a multiple exposure of many individual
movie frames. This method of photographic sig-
nal averaging reduces the transient effects of
noise due to the image intensifier’s dark current.
It also obscures random vortex motion caused by
mechanical disturbances.

The sample of superfluid fills a cylindrical
bucket of 2 mm diam and 25 mm depth. A small
amount (0.8%) of the *He is added to the “He to
provide some normal fluid damping at the low
temperatures required to perform electron op-
tics in the helium vapor. The cylinder’s axis is
placed near the rotation axis of a rotating dilu-
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