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drawn to the book by G. Z. Gershuni and K. M. Zhuk-
hovitskii, Convective Stability of IncomPressible Fluids
(Keter Publishing House, Jerusalem, 1976); we found

that in Sects. 3, 5, and 6 of this monograph, the authors
discuss the theoretical aspects of the same problem as
analyzed in our present work.

Note that the corresponding Brunt-Vaisala fre-
quency, for purely gravitational waves, defined as N
=(- v&Rd ) (see Ref. 2), would then have the value
6.61 sec

Without a considerably more sophisticated detection

design, it is impossible to predict reliably the relative
weight of the two signals. Note that the same cause
may be the origin of similar problems in some earlier
work (see Ref. 8).

The Fourier analysis along the horizontal direction
(-wavelength I) could also be replaced by a real-space
analysis. This method was used in. the case of unstable
stratification to study the response of the system to a
local temperature excitation [B.M. Berkovsky et al. ,
J. Fluid Mech. 89, 173 (1978)] and could be applied to
the present problem.
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Stochastic behavior of particle motions in an electrostatic standing wave is analyzed;
its significance in supplementary heating of plasmas is discussed.

In heating plasmas with high-power rf waves,
a symmetrical structure' is often used, which
leads to large-amplitude standing waves in the
plasma. As a result, stochastic heating of low-
energy particles can readily occur. If this sto-
chastic heating happens at the surface of a toka-
mak where energy is poorly confined, a signifi-
cant fraction of the rf energy may be lost. The
onset of stochasticity may be visualized by draw-
ing phase-space contours of constant particle en-
ergies in the presence of each of the two opposite-
ly directed traveling waves alone. If the wave
amplitude is sufficiently large, the overlapping
of contours allows particles to execute random
walks in these two waves. Therefore, the con-
stant of the motion disappears and the trajectory
appears to be chaotic.

Applications of stochastic acceleration' have
been studied by Smith and Kaufman' for an ob-
liquely propagating wave and by Kearney and
Hers' for a perpendicularly propagating wave.
Here, we consider particle motions along the
magnetic field lines, or in an unmagnetized p3.as-
ma in the presence of a standing electrostatic
wave, and discuss the stochasticity boundary,
the scaling laws of heating, and the modification
of the plasma dielectric function due to stochastic
electron motion.

We begin our analysis by writing the equation
of motion for a particle in a standing wave of fre-

quency ~o and wavelength Xo =2m/ko:

d'X/d T' = P sinX sinT,

d'X/d&' = pX sin&, (2)

where (—1)" is absorbed into sinT. Equation (2)
is a special case of Mathieu's equation, d g/dq'
= (b —h' cos'cp)g, with the relation b =h'/2 = 4p. It
is a general property of Mathieu's equation to ex-
hibit alternating regions of bounded and unbounded
solutions in (b, h) space. When p & p, =0.456, the
solution is unbounded. e To understand this "sto-
chastic" instability, Eq. (2) is solved by Fourier

where in dimensionless units, p =eEoko/m~o is
the electric field strength, and X =kox, T = &sot

are the spatial and temporal coordinates. The
onset of stochasticity may be found by the criteri-
on of overlapping resonances. ' Decomposing the
standing wave into two traveling waves and con-
sidering the particle orbits in each of the travel-
ing waves, one finds the particle trapping regions
overlap when p =1. This gives a stochasticity
boundary at p- 1~ The physical origin of the
stochasticity may be illustrated from the spec-
trumX =(1/2m) I'„X(&)e' dT. To study the
character of the spectrum, we linearize Eq. (1)
around the fixed points Xo" = nm (n is an integer)
to give
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analysis,

uPX +(p/2i)(X „—X,) =0.

Substituting ~+ 1 for w and combining the equa-
tions, we obtain

1 1
st( ) 4 ( 1)2 ( 1)Q

p X~ 2 X~+2
4 (&u —1)2 (+ + 1)2

P = 0.23

20

P = 0.5

2

Since the onset of the stochastic instability is ex-
pected to occur when p (1, justified a posteriori,
we may neglect the term on the right-hand side of
Eq. (4) which is shown to be of order p' by sub-
stituting co+ 2 for ~ in Eq. (4) and combining the
resulting equations. We note that the dispersion
relation obtained resembles that of the two-
stream instability and can be solved analytically
by making it into a cubic equation in 0 = ~'. Mar-
ginal stability occurs when two of the roots of 0
are equal, which gives p, =0.473. This value is
slightly higher than that obtained from Mathieu's
equation, since higher harmonics were neglected
and the harmonic-generation process could have
contributed to the onset of the instability. Six
modes are present in &„(~)= 0: two sidebands
around each of the two traveling waves, and two
"stochastic" modes with rea, l parts of frequen-
cies at ~„=+ p/~2. Saturated fluctuation spec-
trum at the stochastic modes for 1&p &p, is ex-
pected for the nonlinear system, Eq. (1). Numer-
ical results are shown in Fig. 1. When p is small,
particle motions are characterized by a shifted
pump-wave frequency with tiny contributions from
sidebands. For 1&p & p„X develops, with dis-
tinguished peaks at the stochastic modes, a broad-
band noise indicating a possible long limit-cycle
period. The spectrum resembles a fully ergodic
system which is expected to yield simply white
noise. The particle trajectory is also analyzed
by the stroboscopic method. ' On a stroboscopic
plot, a regular trajectory due to the constraint
of the constant of motion may appear as a set of
points to lie on one or more curves, while a sto-
chastic trajectory appears as a set of scattered
points. With the development of broadband noise
for p & p„ it is expected that no simple pattern
of curves would result [Fig. 1(c)j. It appears
therefore more accurate to regard p, as the sto-
chasticity boundary.

Heating of particles, an irreversible process,
arises because the stochasticity leads to irrevers-
ibility through the mixing process: A small ele-

(c)

FIG. 1. (a), (b) X~ vs . (c) Rroboscopic plot of X
=P siDX sinT, P = 0.8, initial position at 0 point, one
Rot per @rave period. Solid lines are the regular tra-
jectories for X =p sinX at different energies.

ment of the phase-space Quid develops into a fila-
mentary structure throughout the accessible phase
space. Irreversibility may also be accomplished
in reality if the period of the limit cycle exceeds,
for example, the collisional time, or if the bound-
ary effects of a finite-size antenna are included.
To study the scaling laws of heating, we calculate
the energy gain for both large and small p values.
For p «1, the averaged kinetic energy is calcu-
lated iteratively, (V') =V,'+ (p'/4)(V, '+ 3)/(V, '
—1)2, where V, is the initial velocity and V, and
V are normalized to the phase speed. The energy
gain is proportional to p'. The energy absorption
possible from two Landau resonances is excluded
in order to compare with stochastic heating in
which Landau damping plays no part. When p»1
and the particle motion is stochastic, excluding
Landau damping, the distribution function satis-
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fies

f +V f + psinXsinT =0.
BT BX BV

Since p = &u,2/(do2, where &o, = (eEoI2o/m)"2 is the
bounce frequency, Eq. (5) may be studied by mul-
tiple-time expansions. If we define ~ = p"'T, v

=V/p 2, x=X, and H=v2/2+cosx sinew, and
change variables from (X,V, T) to (x, H, v), Eq.
(5) is transformed into

—+v(x H v)—+ ecosxecos~~ =0.Bf sf 'f
8II

Here, e =1/pU2«1. If one assumes

f ffo) +-&f(a) +&2f (2) +

8 8
— + 6' + E' + ~ 4 4

BT 8 ji 872

the lowest-order equation is

sf (o) Bf(o)
+v =0.

870 Bg

The physical solution of interest is the temporal
evolution of the energy; we choose f(') =f(o) (H,
~» 7'». ..). To next order,

(o) 0 (a) 0 (a) (o)
+ + v + cosx costa = 0. (8)

8 fj 87 0 BX BH

We must eliminate the secularity from Eq. (8).
The first term independent of 70 and x is a secu-
lar term. Since the last term averaged over the
particle trajectory is nonzero, we have to let

0 (o) (o)

8Ta'+ (cosx) cos~ = 0,' 0H

where (cosx) = (It cosxdx/v)/(It) dx/v). The inte-
gral path is taken along the particle trajectory
given by v =+ [2(H —cosx sin~a)]"'. Since (cosx)
is a function of ()(= sinra/H alone and can be writ-
ten in terms of elliptic functions the general so-
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FIG. 2. (V') vsP. Initial temperature 10 ev, (s)o/~p
=1.5&&10~ cm/sec, V0=0 127 As an example, final
temperature for P =0.7 is around 1.4 keV.

lution to Eq. (9) is given by f ' =f ' [H/expA(e)],
where A(n) = f~"(cosx)dn' It. is instructive to find
the similarity solution by substituting &, = T, H
=V'/2p+cosXsinT back. When V2 = pv', p is
scaled out of the solution. The average energy
perparticle thus scales with p for p» 1.

A one-dimensional particle- simulation code
was developed to test the scaling laws. The code
uses 512 particles with the initial distribution
Maxwellian and spatially uniform. Comparisons
are made for sudden turn-on and adiabatic turn-
on of the pump wave; no difference in the final
stage is detected. Within a few wave periods,
the averaged particle kinetic energy has reached
an equilibrium value with appreciable Quctua-
tions. Figure 2 shows time-asymptotic averaged
kinetic energy versus p; qualitative agreement
with the theory is obvious. The stochasticity
boundary p, appears to coincide with the inflec-
tion point of the curve.

To study the modification of the dielectric func-
tion due to stochastic electrons, we follow closely
the work by Kruer, Daw'son, and Sudan. Equa-
tion (2) perturbed by an electric field is

fl

, =(—i)"(X"sie&e s ft(S', ~')ess(iS'X" —ie'T)dS'de'.

The perturbed electric field E(k', (d)') is influential around the equilibrium points X,"=nw and is negla-
gibie otherwise. We restrict ourselves to p(1 so that an expansion in p is possible while intrinsic
stochasticity may still occur. Fourier analyzing Eq. (10) and retaining accuracy to order p, follow
ing the procedures in Ref. 6, we obtain the nonlinear electron density due to particle stochasticity.
Treating the background plasma as a continuous medium with a general dielectric function eL(k, (d)), we
obtain

(~ )E(~ )
its(' g (~ )

p E(k+ m, (u+ 1) E(&+m, (o —1) '
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k'Xe A+k 2~ a De st
s ~ ga pa/2 (12)

Destabilization of drift waves because of stochas-
tic electrons arises if co,*&p/~2.

These results can be compared with some ex-
perimental observations. Hooke and Bernabei'
reported that the penetration of rf energy is a
strong function of pump-wave frequency where
standing waves are generated from plates. The
electric field E in the experiment is believed to
exceed 5 V/cm, X,- 20 cm. The parameter p
found from nii'ey/m, c' decreases with frequency
from 7 at 15 MHz to 1 at 40 MHZ. The rf energy
penetration increases with frequency which was
explained (Ref. 1) by the linear ray trajectory Ve
=V&„(1—(u1 „a/era) but with a discrepancy between
the observed and predicted density by as much as
a factor of 2-8. It is apparent from our estimate
of p that stochastic heating should occur at low
frequencies in that experiment and with the same
frequency dependence. Drift-wave satellites
were excited without a threshold which agrees
with the conclusions following Eq. (12) since &u, *
«1. For rf heating experiments in the dc octo-
polea with the estimated E 10 V/cm, Xo- 2 cm,
and (u, from 10 MHz to 1 6Hz, P values vary by

Here, 0„'= 4'�„e'/m, coo' is the plasma frequen-
cy of the stochastic electrons, N „is the number
of stochastic electrons involved, and the summa-
tion is over integers ranging from -~ to +~. To
allow a perturbative treatment, N„/N, is as-
sumed to be small, and N, is the averaged den-
sity. The coupling of the standing wave with one
natural mode in the background plasma can then

be studied.
We may take e i(k, &u) = [(I —~, */~ ) A+ k i'y, '] /

(ki'+k')/XD, ', the drift-wave dispersion relation.
Here, the ion thermal effect is neglected, w,* is
the electron diamagnetic drift frequency, A., is
the ion gyroradius at the electron temperature,
XD, is the electron Debye length, A = 1+i', and 5

represents the dissipative effect; all quantities
are normalized to &u, and k,. Since c„(&u) is off
resonance for &u-~,*«~„&1, Eq. (11) is simpli-
fied by keeping the largest nonlinear term:

four orders of magnitude and may well exceed 1.
Although plasma-wave coupling is excellent in
the low-frequency regime, the power transmitted
to the plasma core saturates when the applied
power increases. These observations can be un-
derstood from the stochastic heating mechanism.
In other recent lower-hybrid heating experiments
on Doublet IIA' and Alcator" p values might
vary from 0.1 to 1; the present mechanism could
be significant.

Finally, we note that a standing wave may sto-
chastically heat electrons along the field lines or
ions perpendicularly without any resonance con-
dition. The standing wave may be created in the
plasma core by launching two oppostiely directed
traveling waves from the plasma edge. Accessi-
bility of the traveling waves could easily be pro-
vided since a wide range of frequencies and wave-
lengths might be used.

The authors wish to thank Dr. C. Chu, Dr. G.
Guest, and Dr. T. S. Wang for many useful con-
versations. They are grateful to Dr. Guest for a
critical reading of the manuscript.
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