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Below &, = 122.9'K, C24K shows a transition from the intralayer disordered state to
an ordered state. For T)7;, present diffuse scattering data from the potassium inter-
calate in graphite indicate a two-dimensional (2-D) character of the short-range order.
As this 2-D scattering increases with decreasirg temperature, @&0 superlattice reQec-
tions appear at 7.; which have a true 3-D character that results from essentially simul-
taneous intralayer and interlayer ordering. This long-range order vanishes as ~T T, ~

S—
with P = 0.180+ 0.01.

In recent years graphite intercalation com-
pounds have attracted increasing interest because
of their pronounced anisotropic [ quasi two-dimen-
sional (2-D)] properties. ' In the pure stage-2
compounds, C,pI (M=K, Rb, Cs), every second
hexagonal graphite plane is followed by an alkali
layer, regularly stacked together along the hexa-
gonal c axis.' ' At high temperatures, the alka-
lais are sited within the graphite lattice possibly
as a 2-D lattice gas which undergoes an order-
disorder transition at a lower temperature as
first explored by Parry and co-workers. ' While
many papers have dealt with the structure of the
C,pI compounds, ' there has been until recently''
little quantitative structural information on the
phase transitions. Prior work" ' indicates that
C,4K actually undergoes two transitions, at -124
and - 95 'K, and we shall concentrate here on the
upper one.

We used highly oriented pyrolytic graphite
(HOPG) with a c-axis mosaic spread of -1', which
broadens to about 2' in the intercalation process.
The hexagonal (hk0) (hkl refer to continuous re-
ciprocal lattice variables) plane is thus explored
as a 2-D powder pattern with cylindrical rather
than spherical averaging. Sample preparation
and characterization are described in detail else-
where. ' However, we note that the sample cham-

bers were fitted with Be windows which permitted
observation of weak diffuse K scattering otherwise
obscured by the diffuse scattering from the com-
monly used glass containers. The stage of the
sample was determined by the c-axis repeat dis-
tance which was 26.15+ 0.03 A compared to 26.2
A for the ideal stage-2 compound C24K. In this
study we used Mo Kn, radiation off a Johanne
asymmetric-cut Ge(111) monochromator. All
scans were carried out in the transmission-scat-
tering geometry. For the low-temperature meas-
urements a liquid nitrogen cryostat with resis-
tance heater was used. Chromel-Alumel thermo-
couples were placed in a hole in the metal sample
chamber and the temperature was maintained to
better than+ 0.02'K with an Atronix controller.

In the event that true 2-D translational long-
range order (LRO) exists within the (uncorrelated)
potassium layers, reciprocal lattice rods from
the ordered structure are expected rather than
3-D reciprocal lattice points. For HOPG such
rods become cylindrical shells of intensity extend-
ed in the direction normal to the hk0 plane. For
the translational short-range order (SRO) preced-
ing the LHO, the same considerations apply.
X-ray step scans in different directions of the
reciprocal lattice were carried out as noted in
Fig. 1: Scan A corresponds to a 19:20 scan in the
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FIG. 1. Part of the reciprocal lattice pro]ected on
(h&) (Refs. 4 and 6). The fQled circles refer to the
fundamental reflections of graphite. The open circles
refer to potassium superlattice reflections. The thick
line indicates a reciprocal lattice rod for 2-D ordered
& layers. The scans are described in the text.
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cylindrically averaged hkO plane; scan B, which
is normal to the hkO plane, probes the dimension-
ality of the intensity distribution due to LRO and
SRO; scan C crosses the rod (cylindrical shell)
parallel to the hk0 plane and permits us to sepa-
rate 2-D SRO diffuse scattering from a 3-D Bragg
peak below T,.

In Fig. 2, the experimental results of scanA at
room temperature are compared with those at
85'K, 38 K below the observed critical tempera-
ture, T„of 122.9'K. The graphite reflections
at q(hk) = 2.94 A ' and q(hk) = 5.08 A ' are not af-
fected by the transformation. The "peak" at
q(hk) =2.94 A ' is due to the stacking-fault-
smeared 101-101profile' and is not a 100 reflec-
tion which is forbidden. The main diffuse peak
centered around q(hk) = 1.26 A ', as well as its
harmoinc at 2.40 A ', gradually sharpens during
cooling but shows no singularity at T,. Above T„
this diffuse scattering at 1.26 A ' does not fall
off normal to the hk0 plane, thus indicating an in-
tensity distribution attributable to truly planar
potassium pair correlations with no correlations
between planes. For T &T, additional superstruc-
ture reflections of the ordered potassium layers
appear at q(hk) =1.70, 2.18, 3.66, 3.86, and 4.22
A '. While we concentrate in the following on the
intensity distribution in the vicinity of the peak
at 1.70 A ', we note that the positions of the five
reflections may be indexed with use of a 2~3a
x2v3a supercell for the ordered layer where a is
the graphite spacing. However, intensity calcula-
tions have yet to establish the true ordered struc-
ture.

The temperature dependence of the intensity dis-
tribution at the 1.70-A ' potassium reflection was
measured in two directions of the reciprocal lat-
tice, according to scan B and scan C in Fig. 1.
Figure 3(a) shows two typical examples of scan B

(iso)
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FIG. 2. Scan A. of the powder-averaged (k&0) plane:
(a) disordered phase at 292'K; (b) ordered phase at
85'K. The curves are drawn as an aid to the eye.

at q(hk) =1.70 A ' along l above and below T, .
Above T„ the Bragg-like intensity disappears
leaving a flat background which consists mainly
of SRO diffuse scattering. The diffuse scattering
background alone seems to be independent of l in
the low-temperature ordered phase. Vfhereas the
Bragg peak reflects a 3-D ordering, the ridgelike
diffuse scattering in directions normal to the hkO

plane indicates a 2-D SRO of the potassium atoms.
Scan C in (hk) at q(l) =0.2 crosses the ridge well
away from the Bragg peak and thus reflects the
in-plane SRO diffuse scattering alone. The peak
in Fig. 3(b) was seen over a range of temperature
from well below to well above T, [see Fig. 4(c)].
It shows that the diffuse (critical) scattering has
2-D character above T, because, as in Fig. 3(a),
it is l independent. Projected in the hkO plane it
is centered at the same position as the 1.7-A '
superstructure peak below T, and must be distin-
guished from the pronounced high-temperature
scattering shown in Fig. 2(a). Because similar
scans below T, gave similar results, we tenta-
tively conclude that the diffuse critical scattering
at T & T, indicates 2-D fluctuations accompanying
3-D order.

If one adopts here the language of classical
phase transitions, the superlattice peak intensity
on top of the ridge is proportional to the square
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PIG. 3. (a) Scan': data taken atT, —24 5 (filled
circles), and T, + 2 (crosses); the dashed line indi-
cates background scattering, measured well away from
q(h&} = 1.7 L '. (bI Scan C: data taken at T, + 0.2'

(open circles) .

of an assumed LRO parameter provided that the
(flat) background is properly subtracted. The
peak intensity was scanned in the E direction
at q(hk) =1.70 A ' and the background from q(l )
=+ 0.24 A ' to q(l ) =+ 0.16 A ' was averaged and

subtracted from the peak intensity, which was
determined from the maximum plus the bvo ad-
jacent values summed to improve statistics. As
the full width at half maximum does not change
with temperature, the temperature dependence
of the peak intensity so determined indicates a
continuous or second-order phase transition as
noted in Ref. 6. We therefore performed a least-
squares fit of our measured and corrected intensi-
ty, I, according to the power law I =a(V —V,)'s,
and the final result in temperature units i.s shown
in Fig. 4(a). V and V, are the thermocouple volt-
ages which are linearly related to the measured
temperature and critical temperature, respect-
ively, and p is the exponent for the assumed LRO
parameter. By variation of V, the standard devia-
tion, o =Q, [I '(V') -a(V' —V,)2s]', was mini-
mized, as described by Als-Nielsen and Dietrich, '
yielding the values p =0 ~ 18+ 0.01 and T, =122.9
w 0.5'K [see Fig. 4(b)]. Figure 4(c) shows that
the l-independent peak maximum of the SRO dif-
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FIG. 4. (a) The q(h&) = 1.70 A q(& ) = 0 superlattice-
peak intensity vs reduced temperature difference from
the phase transition temperature of 122.9 K. The full
line corresponds to the power lawI =a((T T, )/T, ] ~S—
with the best-fit values T, = 122.9 K and p = 0.180.
(1) Standard deviation (closed circles) vs critical
thermocouple voltage to determine the best critical
voltage, V~. Prom the upper plot of P (open circles)
vs V„ the appropriate P is then selected. (c) Peak
intensity of the SRO diffuse scattering, measured with
scan C' f q(E ) = 0.2 A ~l as a function of temperature.

fuse scattering (scan C) becomes critical at the
same T,. In order to extract the corresponding
critical exponents y and v, the line shape of the
diffuse peak must be unfolded from the instrumen-
tal resolution function and this is currently under-
way.
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These experiments show that the LRO is 3-D at
T, although SRO above and below T, has a 2-D
character. The critical temperature T, =122.9'K
is in reasonable agreement with earlier work. ' '
No indication of a second phase transition at the
lower resistivity anomaly at' ' 95'K or at the
transition temperature of 98'K given by Nixon
and Parry' could be detected in the AAO x-ray
scans. Thus, the 98 K transition seems to re-
sult from additional interplane sequencing. '

The exponent P =0.18+ 0.01 is certainly well re-
moved from the Pade-approximant value of 0.312
for a 3-D Ising model. " It is slightly closer to
the exponent for the 2-D antiferromagnets of the
class" K,NiF4 for which the most recent deter-
minations by Ikeda, Suzuki, and Hutchings" show
true 2-D Ising behavior with P = 0.125. Clearly
a very anisotropic (essentially 2-D) interaction
Hamiltonian is responsible for the intraplane or-
dering. Presumably a weak longer-range inter-
action between planes" results in simultaneous
interplane and intraplane ordering with no appar-
ent transition regime from 2-D to 3-D behavior.
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Nature of the Bond in Hydrogen Chemisorption on Ni, Pd, and Pt
J. P. Muscat and D. M. Newns'"

Department of Mathematics, Imperial College, London S. T4'. 7, England
(Received 7 February 1979)

We describe a model of H chemisorption on Ni, Pd, and Pt in which both extended
sP bands and the more localized d bands are appropriately incorporated. It is found
that interaction between the H 1s level and the substrate & levels plays an important
role which increases in the order ¹i&Pd& Pt. The results are in good accord with
ultraviolet-photoelectron-spectroscopy data.

The chemisorption of hydrogen on such metals
as Ni, Pd, and Pt has been extensively studied
experimentally. Many theoretical calculations' '
exist on these systems but a clear insight into
the nature of the bond still seems to be lacking.

Ultraviolet photoelectron spectroscopy (UPS)

studies' on the Ni(111), Pd(111), and Pt(111) sur-
faces show a peak below the d band induced by H

chemisorption, described in Anderson-model
theories as a 1s-d bonding state. This contrasts
clearly with the much simpler H-jellium system,
where first-principles calculations' reveal the
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