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TABLE 1. Comparison of theoretical results [ Eq.
(11), 1n(A/65)] with empirical results [Eq. (14), 1n(3/
0)1.

62 7 A B In(3/6y 1n(4/68)
0.005 1.16153  2.623 1.013  3.748 3.649
0.01 1.183065 2.598 1.017  3.401 3.297
0.02  1.21202  2.565 1.023  3.055 2.944

shortest and this distance compares well with the
results of Suydam; and (c) that for stabilized ex-
perimentally observable filaments the initial size
of the perturbation, b, lies between b, and b,/
(1.6)2 (as shown in the text) explaining thereby
the nearly constant size of filaments observed ex-

perimentally.
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We present a general, self-consistent, nonlinear theory of the free-electron laser
(FEL) process. The formulation of the temporal steady-state problem results in a set
of coupled nonlinear FEL equations governing the spatial evolution of the amplitudes
and wavelengths of the fields. We show that intrinsic FEL efficiencies can be greatly
enhanced by spatially contouring the magnetic pump-field parameters. In the optical
regime, the single-pass efficiencies are found to exceed 20%.

The operative mechanism in free-electron la-
sers (FEL’s) is a parametric process in which a
long-wavelength pump field interacts with a beam
of relativistic electrons.'”® In this paper we take
the pump to be a static, periodic, right-handed
magnetic field. The frequency of the scattered
radiation is given by w= (1 +vc)y v (27 /1)
=4my %c/l, where y,=(1 +v,2/c?) /%, v, is the axi-
al beam velocity, and !/ is the pump period. The
possibility of using a two-stage FEL scattering
process, in order to reduce the electron energy
required for very short output wavelengths, has
also been suggested.® ®

Roughly speaking, FEL’s can be divided into
two categories, depending on the gain of the radi-
ation field. Inthe low-gain experiments,'® the
radiation field in the interaction region increases
only slightly during the passage of the electron
beam, while in the high-gain experiments,*!” 3
the radiation field e-folds many times in the in-
teraction region. Hence, the low-gain regime is
most appropriate for oscillator operation, while
high-gain FEL’s can be operated as either ampli-
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fiers or oscillators.

The main objectives of this work are to present
a self-consistent nonlinear formulation of the
FEL mechanism and to analyze theoretically
some of the concepts necessary to develop effi-
cient, high-power, tunable, FEL radiation sourc-
es. Some of the salient features of this theory
include (i) a completely arbitrary magnetic pump
field (period and amplitude can be functions of
axial position), (ii) space-charge effects, (iii) ar-
bitrary polarization of the radiation field,
(iv) completely relativistic particle dynamics,
and (v) frequency and spatial harmonics in the ex-
cited fields. The nonlinear formalism developed
for the FEL problem is also applicable to a large
class of temporal steady-state convective proc-
esses. Inthis approach, there is no large sepa-
ration of spatial scale lengths, despite the large
spatial scale difference between the wavelength
of the scattered field and that of the pump field.
This permits numerical solutions for cases where
the electron-beam energy is extremely high. Our
present treatment does not consider trapped-par-
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ticle instabilities which may result in frequency sidebands about w.
Only spatial variations along the z axis will be considered. The variable-amplitude and -period
pump magnetic field can be expressed in terms of the vector potential

A (z) =A @) cosl [, ko(z")dz"1e, +sinl [, ko' dz"18,}, 1)

where the amplitude Ao(z) and wave number %,(z) are known and are slowly varying functions of z. The
scattered electromagnetic and electrostatic fields in terms of the vector potential A (z,¢) and scalar po-
tential ¢ (z,t) are taken to be

Kz ,t) =A, @) cosl [ k. (") dz’ - wt +6)2, - A, () sin [, k. (") dz" = wt +6]2,, (2a)
cp(z,t)=<p(z)cos[ fozk(z’)dz’—wt +9z], (2b)

where the amplitudes of the potentials, A,(z), A,(&), and ¢(2), as well as the wave numbers &, (z) and
k(z), are slowly varying functions of z. The evolution of the scattered potentials is governed by the
wave equations where the general form for the driving current is

T, t)==lelngv o) o Dlo,tl, ™ Mo, )0t = T(t,,2)) dty,

where n, is the uniform particle density to the left of the interaction region, i.e., 2<0, v,, is the con-
stant axial electron velocity at z =0, p(t,,¢) is the momentum vector of the particle at time ¢ which
crossed the z =0 plane at time t,, 7(¢,,2) =t,+/5v,” *(,,2')d2’ is the time it takes a particle to reach
the position z if it entered the interaction region, z =0, at time ¢,, and v,(t,,2) is the axial velocity of
a particle at position z which was at z =0 at time ¢,. The reduced equations for A,(z), A,(), k.(&z) are

A el [ b o [Tl oSt D,

c?=k.%(2) |A,R) o b, (to,7(¢,2)) singlz,7(,,2))
2k+1/2(z)§;{§xg;}k+l/2(z)

y

B v, am/w (. (t,,7(t,,2)) sini(z,7T(,,2)

——4|e|n0-?Q wf, Pe (t°’7(t°’z)){py(tz,r(tz,z)) coszp(z,f(too,z))}dt“ (3b)

where ¥(z,7) =I: k.(2")dz’ —=wT +0. Similar results can be obtained for ¢(z) and k(z).
The particle orbits in terms of the entry time ¢, and axial position z are

p.e,7) =(lel/eAn@) +4,e,T)), by, =(lel/c)An) +A,6,)], “a)
deen) 1l [ 2 [F o) + K, - 2,02 20, |, )

where y(z,7) ={1+(le|?/m2c?) A,z) +AE,7)]2+p,2(z,7)/m2c? /2. At this point we take the scattered
electromagnetic wave to be circularly polarized and set A,(z) =A,(z) =A (z). Using the expressions for
P, and p, given by Eq. (4a) in Egs. (3a) and (3b) gives

w? w,2 w pemiw ~
C2_k+2(Z)A(z) =¢m0020;r—j;’ pz 1(t0’T(t0,z))[A0(z) COSZP(Z’T(tO,Z))+A(z)]dto, v (sa)
2 2m/w ~

2k+1/2(z)£[A(z)k+1/2(z)]=_-;-)Cb—2m0vzo$ o pz'l(to,'r(to,z))Ag(z)Sin¢(z,7(t0,z))dto, (5b)

90() —w,? v, myc? reriv

(gi = CZ" = I;I fo siny,(z,7(t,,2))dt,, (5¢)
-2 2 /

k@) ==t 2 BT [ cosy, (2,7 (0,2t (54)
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where w, = (@ le|2n,/m )2, ¥,z,7)=[; k") dz’
-wT+0, and J(z,7) =¥(@,T) +[Z ky(2')dz’. The
nonlinear formulation of the FEL is fully de-
scribed by Egs. (4b) and (5). The amplitude and
phase of the scattered fields as well as the axial
beam momentum all vary with a characteristic
axial length which is much longer than the pump
wavelength 7.

The ponderomotive potential plays a central
role in axially bunching the electron beam. This
potential is given by ¢y (2, 7) = = |e|(yym,c?)~?

X A,(2)A(z) cos(z, T), where v, is the initial total
gamma factor of the beam. The efficiency can be
defined as the ratio of the electromagnetic-energy-
flux increase to the initial electron-energy flux
and is given by

n =[ |e’ /(moc)]z(w/wbz)[vzo (70" 1)]- !
X[k, (2)A% () = £, (0)42(0)].

Now we present the numerical results for the
coupled nonlinear FEL equations in‘(4b) and (5).
We choose an example where the output radiation
is in the optical regime. The monoenergetic elec-
tron beam enters the interaction region at z =0
with a uniform density. In all of our numerical
simulations a small-amplitude radiation field is
introduced as a perturbation at z =0.

(a) Constant magnetic-pump illustvation.—Ta-
ble I lists the salient parameters for the magnetic
pump, electron beam, and output radiation. Fig-
ure 1 shows the amplitude of the vector potential
of the scattered radiation, A (z), and the spatial
growth rate, T =8[ 1n4 (z)] /a2, as functions of z.
Those plots are for an optical frequency of w
=2y,,%ck,=2.525X10" sec”'.

Figure 2 shows a comparison between the spa-

TABLE 1. Optical illustration of FEL (constant mag-
netic-pump parameters).

Magnetic-pump parameters
Pump wavelength I, 1.5 cm
Pump amplitude B, 6.0 kG
Electron beam parameters
Beam energy E,, 66 MeV (y,=131)
Beam current I, 2 kA
Axial gamma ¥z, 100
Beam radius 7, 0.1 cm
Output radiation parameters
Radiation wavelength A, 0.75 um
Linear e-folding length? L,, 38 cm
Efficiency 5, 0.52%

2For maximum growth rate, note that L, =(8ln4/8z2)" L.
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FIG. 1. Wave-vector potential A(z) and spatial linear
growth rate I' as a function of axial distance in the opt-
ical regime. The frequency is chosen to give the max~
imum linear spatial growth rate.

tial growth rates obtained from the linear regime
of the numerical simulation of our FEL equations
(crosses) and the linear growth rates obtained
from the dispersion relation calculated else-
where® '* (solid curve) over the frequency spec-
trum. Figure 2 also compares the efficiency at
saturation obtained by solving the FEL equations
(circles) with the calculated values of efficiency
using electron trapping’ arguments (dotted curve).
o) Efficiency enhancement by contouring mag-
netic-pump period*—The phase velocity of the
total longitudinal-wave potential, i.e., ponderomo-
tive plus space charge, isv,=w/(k, +k,). If the
magnetic-pump period is held fixed, the radiation
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FIG. 2. A comparison of the growth rate in the linear
regime of the nonlinear simulation (crosses) with the
growth rate from linear theory (solid curve), and a
comparison of efficiency from nonlinear theory (circles)
with that from linear theory using trapping arguments
(dashed curve) as a function of frequency.
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FIG. 3. Enhancement of radiation field by decreasing
the magnetic-pump period. The efficiency has increased
from 0.52% at 2=4.5 m with a constant pump period to
20% at 2 =13 m with the period of the pump changing as
shown.

field reaches its maximum value when the elec-
trons are trapped at the bottom of the longitudinal
potential wells. Just before the radiation field
saturates, the electrons are somewhat spatially
bunched and trapped near the bottom of the wave
potential. The trapped electrons can be consid-
ered, for our purpose, to form a macroparticle.
By appropriate reduction of the phase velocity as
a function of axial distance down the interaction
region, the longitudinal kinetic energy of this
macroparticle can be further reduced and convert-
ed into wave energy. The maximum conversion
efficiency obtainable by employing this scheme

is Nux = (70 "70_,_)/(70 ~1), where Yo=Y0.Y 20 and
a is the fraction of particles trapped. The phase
velocity must be reduced in such a way so that
the inertial potential of the trapped macroparti-
cle is always less than the potential of the grow-
ing longitudinal wave. The phase velocity can be
reduced by decreasing the period of the magnetic
pump’* as a function of z. In order for the macro-
particle to remain trapped, the spatial rate of
change of the pump period must be sufficiently
slow. Note that the pump period cannot be made
arbitrarily small; for example, I(z) must be
greater than 277, in order to ensure a pump field
of the form given in (1).

A number of alternative efficiency enhancement
schemes have been suggested.'® '®* One such ap-
proach is to fix the magnetic-pump period while
decreasing the magnetic-pump amplitude.'® The
maximum conversion efficiency using this method

is Nk = /o=Y20)/ly,—1). However, since v,
>y, it seems that the former approach would
lead to higher efficiencies.

We will illustrate efficiency enhancement by
contouring the pump period while holding the am-
plitude of the pump magnetic vector potential con-
stant, using the parameters in Table I. The peri-
od of the magnetic pump, I(z), is depicted in Fig.
3. The spatial decrease of I results in a large in-
crease in the amplitude of the wave vector poten-
tial as shown in Fig. 3. For this particular case,
the contouring is terminated at 2 =13 m and the
efficiency at this point is already 20%.
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