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In closing, it is worthwhile mentioning that the
bulk of the computation involved in the present
calculation concerned the determination of the
electronic R -matrix levels at seven internuclear
distances with use of already-existing fixed-nu-
clei R-matrix codes. The additional work to cal-
culate the vibrational cross sections, which in-
cludes the fitting of the potential curves, deter-
mination of vibrational eigenstates and vibration-
al A matrices, and the final matching to the ex-
ternal solutions, was trivial because only two
minutes of computing time on the CDC 6600 were
needed to calculate the vibrational cross sections
at over 100 energies. This enabled us to study
the details of the transitions in a way which would
be prohibitive with even the most efficient close-
coupling technique,

Further details of the calculations will appear
in later publications.

The authors are indebted to the staff of the
Centre de Calcul de Physique Nuclhaire at the
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us over the past eight months.
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The instability theory for sinusoidal perturbations is extended by use of an appropri-
ate energy-conservation criterion. This theory predicts that perturbations initially
grow exponentially but can subsequently either stabilize or decay depending on their
transverse size.

In situations where intense laser beams travel-
ing through nonlinear cubic media (e = op+ e,

~
E~')

result in multiple filament formation, there is a
one-to-one correspondence' between the filaments
and intensity spikes riding with the iricident laser
beams. Instability theories' ' that consider
growth of intensity spikes or perturbations pre-
dict that they grow exponentially as long as the
laser background is not appreciably depleted.
Many important experimental facts concerning
filament formation remain unexplained. These
are stabilization of intensity in spikes (formation
of stable waveguidelike filamentary tracks), ex-
istence of a well-defined threshold for filament
formation, and an almost constant size of fila-
ments in a given nonlinear medium. Some of
these facts are adequately explained by the theo-
ry of filament formation presented here.

In our theoretical model, similar to that of

Bespalov and Talanov, ' we consider a complex
perturbation (e, +ie, ) riding on a uniform back-
ground laser optical field

~
EJ. Instead of assum-

ing exponential growth we write the sinusoidal
perturbation in the form'4

ey e]p y e ' sin(E „x)sin(E „y),

where K~' =K~„'+K~,' relates to the characteris-
tic size of the perturbation and o (z) is the growth
parameter which is taken to be a real quantity.

Since both the background and the perturbation
have infinite transverse extent, it is useful to
consider cells of size (n/K~„) x (n/It ~,) individual-
ly. Overall conservation implies that energy in
each "characteristic cell" should be conserved
during propagation. According to Eg. (I) the en-
ergy of the perturbation, at distance z, in a char-
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acteristic cell is
2

This energy is drawn from the initial uniform background energy
~
EJ'(~'/K~„K~, ). Therefore, the net

electric field intensity in the background at distance z is given by
~
EJ'[1—45'e'"~' ], where b = ~e „

+e20'~'"/~ EJ, which measures the initial perturbation. Replacing
~

EJ' by this value in the coupled
equations of Bespalov and Talanov, ' we obtain a new set of coupled equations for e, and e, :

2

V e, —2' =0.2

Bz

Substituting Eq. (1) into Eq. (2) and eliminating
e, and e„one would obtain

(da/dz)'+a'e' =h, ', (3)

~ we obtain h, '/a' = (4 —271)/5', and the maximum
energy in the perturbation per characteristic
cell is given by

where
2 2K 2

4k' &0
' 4

(4a)

—,'(e„'+e„')exp(2a, „)
=-,'~ E,~'5'[(4 —2q)/5'] =

~ E,['(I ——,'q), (8)

and the corresponding energy in the background
per characteristic cell is given by

E
40' 0

(4b)
( E,)'[I ——,'5'(4 - 2q/b')] =

( E,['-,'q. (9)

The quantity h0' is taken to be positive.
To study the growth of the perturbation we

solve Eq. (3) for n(z). A trivial solution of Eq.
(3) is o =ln(h, /a) =const. With initial conditions,
a (z = 0) =0 and e is an increasing function of z,
the nontrivial solution can be written as

o. (z) = In((h, /a) sech[h, ( -,)]],
where

h, + (h,'- a')'"
0 2h h (h

2 2)1/2

(5)

It is easily verified that at z =z„o is maximum
and its value is given by

a „=ln(h, /a). (7)

This shows that at z =z„both the solutions coin-
cide. The initial conditions allow us to choose
solution (5) for z & z, . For z &z, there are two
possible choices: either a =In(hga) = const or o
is given by Eq. (5). If a satisfies Eq. (5) for
z &z„ it decreases with increasing z values,
thereby implying a backflow of energy from the
perturbation to the background. To determine
condition under which this is possible we let K~2

=q(e2/z0)k'~ E0~' or b'=q 'b, ,', where b (=m/K~)
measures the size of the perturbation, b, , is the
size of the fastest-growing perturbation as given
by Bespalov and Talanov, ' and g is a dimension-
less parameter that relates them. From Eq. (4)

The main background and the perturbation are
coupled through the nonlinearity of the medium.
The direction of energy transfer between them is
determined by their relative energy densities.
Initially the main background has larger energy
density which leads to the growth of the perturba-
tion. The reverse can also happen. The backflow
of energy from the perturbation to the main back-
ground' is possible only when the energy per
characteristic cell at z =z, in the perturbation
is larger than the corresponding energy in the
main background. Equations (8) and (9) imply
that g & 1 for backflow of energy to occur. The
quantity h, '/a' cannot be less than unity since
a would then be negative according to Eq. (7)
and this is not commensurate with initial condi-
tions. Since h, '/a = (4 —2q)/b, it is implied that
g&2--, 5 .1

The choice of the solution of n()fzor z &z, is
determined by the value of q (or the size b of the
perturbation) as follows:

(i) For 0&g & I (or b & b, ,), n(z) is given by so-
lution (5). This is shown in curves I, III, and V of
Fig. 1. In this case the perturbation grows in en-
ergy to a maximum value (until z = z,) and then
decays giving back all the energy to the back-
ground. No stable filament formation results.

(ii) For 1& q & 2 ——2'5' [or b, ,/(2 -5'/2)"' & b
& b, ,], the choice of solution for Eq. (3) is o
= ln(h Ja) = const. This is shown in curves II, IV,
and VI of Fig. 1. In this case the perturbation
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FIG. 1. Growth parameter n(s) plotted for optimum
size perturbations traveling with a uniform incident
electric field ~Eoi =300 esu from ruby laser in nitro-
benzene. Plots for three values of & are shown.

100 FIG. 2. Plots of energy per characteristic cell as a
function of z for the perturbation as well as the back-
ground for nitrobenzene. Initial background [Eoi is
taken to be 300 esu. Plots for 0.5%, 1%, and 21 inten-
sity perturbation are shown.

grows in energy to a maximum value at z =z, and
then stabilizes to form trapped filamentary tracks.

Results of sample calculations, plotted in Fig.
2, indicate that energy in the perturbation always
remains smaller than the energy in the back-
ground. The ratio of the corresponding intensi-
ties is 8/tl —4. Filaments are observable if this
ratio is larger than unity indicating that for this,
ti should be in the range 1&rl & 1.6 or the size h

should be in the range 0.79b,pt&5 &5 pt This ex-
plains the nearly constant size of filaments ob-
served in various experiments.

In order to find threshold for filament forma-
tion in terms of the distance for the first appear-
ance of filaments, D&&, we need to find an opti-
mum value of ti (or perturbation size) for which
z, is minimum. For this, we put dz JdK~=0,
which implies that q should satisfy the following
equality:

(10)

where

lnA = —,'[tl(2 —ti)] '"ln(16 —8tl)

and

(12)

(13)

For a particular value of 6' (fractional intensity
in the perturbation), we can obtain optimum val-
ue of tl (or optimum size of the perturbation) us-
ing Eg. (10). We next obtain h, and h, '/a' using
h, = [7l(2 -tl)]"'2 (s,/s, )h~ E,~' and h, '/a' = (4 -2ti)/
O'. Using these values of h, and h, '/a' we find

D~~ from Eq. (6). For those experimental situa-
tions where 6' is small (or a'/h, ' «1), Eg. (6)
can be put in an approximate form, given by

Suydam~ has found that the experimental values
for Dzz can be fitted well to an empirical formula

2e, /31
(14)

Our theoretical result (11) is comparable with
the empirical formula (14) as is evident from a
tabulation of values for ln(A/6 ) and 1n(3/6) in
Table I.

By incorporating energy conservation in the
theory of instability growth, we are able to ex-
plain (a) that for specific range of characteristic
sizes, the energy in the perturbation stabilizes
to a constant value at a well-defined distance in-
side the nonlinear medium; (b) that for a specific
characteristic size of the perturbation, the dis-
tance at which the stabilization takes place is
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TABLE I. Comparison of theoretical results [Eq.
(11), in(A/& )] with empirical results [Eq. (14), ln(3/
&)] .

ln(3/6) In(A/ds)

0.005 1.161 53 2.623 1.013 3.748
0.01 1.183 065 2.598 1.017 3.401
0.02 1.212 02 2.565 1.023 3.055

3.649
3.297
2.944

shortest and this distance compares v ell with the
results of Suydam; and (c) that for stabilized ex-
perimentally observable filaments the initial size
of the perturbation, b, lies between 5„, and 5,„/
(1.6)"' (as shown in the text) explaining thereby
the nearly constant size of filaments observed ex-

perimentally.
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nents is neglected in this work since the perturbation
is assumed to preserve its shape during propagation
(aberrationless case). Inclusion of aberrations might
change the results quantitatively.

Nonlinear Formulation and Efficiency Enhancement of Free-Electron Lasers

P. Sprangle, Cha-Mei Tang, ' and W. M. Manheimer
U. S. Naval Research I.aboxatoxy, washington, D. C, 80875

(R,eceived 11 July 1979)

We present a general, self-consistent, nonlinear theory of the free-electron laser
(FEL) process. The formulation of the temporal steady-state problem results in a set
of coupled nonlinear FEL equations governing the spatial evolution of the amplitudes
and wavelengths of the fields. We show that intrinsic FEL efficiencies can be greatly
enhanced by spatially contouring the magnetic pump-field parameters. In the optical
regime, the single-pass efficiencies are found to exceed 20Vp.

The operative mechanism in free-electron la-
sers (FEL's) is a parametric process in which a
long-wavelength pump field interacts with a beam
of relativistic electrons. ' ' In this paper we take
the pump to be a static, periodic, right-handed
magnetic field. The frequency of the scattered
radiation is given by ~ = (1 +v, c)y,'v, (2~/1)
= 4vy, 'c//, where y, = (1+v,'/c') '", v, is the axi-
al beam velocity, and l is the pump period. The
possibility of using a two-stage FEL scattering
process, in order to reduce the electron energy
required for very short output wavelengths, has
also been suggested. ' '

Roughly speaking, FEL's can be divided into
two categories, depending on the gain of the radi-
ation field. In the low-gain experiments, "the
radiation field in the interaction region increases
only slightly during the passage of the electron
beam, while in the high-gain experiments, " "
the radiation field e-folds many times in the in-
teraction region. Hence, the low-gain regime is
most appropriate for oscillator operation, while
high-gain FEL's can be operated as either ampli-

fiers or oscillators.
The main objectives of this work are to present

a self-consistent nonlinear formulation of the
FEL mechanism and to analyze theoretically
some of the concepts necessary to develop effi-
cient, high-power, tunable, FEL radiation sourc-
es. Some of the salient features of this theory
include (i) a completely arbitrary magnetic pump
field (period and amplitude can be functions of
axial position), (ii) space-charge effects, (iii) ar-
bitrary polarization of the radiation field,
(iv) completely relativistic particle dynamics,
and (v) frequency and spatial harmonics in the ex-
cited fields. The nonlinear formalism developed
for the FEL problem is also applicable to a large
class of temporal steady-state convective proc-
esses. In this approach, there is no large sepa-
ration of spatial scale lengths, despite the large
spatial scale difference between the wavelength
of the scattered field and that of the pump field.
This permits numerical solutions for cases where
the electron-beam energy is extremely high. Our
present treatment does not consider trapped-par-
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