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The structure and the degree of isospin mixing for the 1+ levels in C at 12.71 Mep
(T =0) and 15.11 MeV {T=1) are determined from measured 180'-electron-scattering
form factors. The resulting charge-dependent isospin-mixing matrix element ranges
from 130 to 165 keV depending on the theoretical model of the isoscalar form factor.

Isospin mixing beyond that which can be ac-
counted for by the simple Coulomb interaction
implies the existence of a charge-dependent com-
ponent in the nuclear force. ' A classic example
of isospin mixing involves the pair of 1' levels in
"C at 12.71 MeV (T = 0) and 15.11 MeV (T = 1).
For this doublet, values of the charge-dependent
matrix element HCD deduced from studies using
hadronic probes' ' vary between 120 and 250 keV.
The divergence in these values underlines the
point emphasized by Adelberger et al. ' that many
of the hadronic particle-transfer reactions may
not be sufficiently well understood to allow relia-
ble determinations of the expected small degree
of isospin mixing. On the other hand, inelastic
electron scattering involves the mell-known elec-
tromagnetic interaction, and can be used to place
constraints on the structure of these states, in-
cluding the isospin mixing, with little uncertainty
attributable to the reaction mechanism. ' ' More-
over, electron scattering can be extremely sensi-
tive to small isovector admixtures in an isoscalar
wave function since, if we ignore convection cur-
rent contributions, the ratio of isovector to iso-
scalar cross sections is proportional to [(p~ —p, „)/
(p~~ p„)]'=28.6. In this Letter we present the
first measurement of the momentum-transfer de-
pendence of the 12.71-MeV isoscalar Ml form
factor as well as new measurements of the 15.11-
MeV isovector M1 form factor, with emphasis on
the first diffraction minimum and second max-
imum,

Data spanning a momentum transfer range from
q=0. 5 to 2.8 fm ' were obtained at the Bates
Linear Accelerator by 180' and 140' electron

!
scattering. At 180 the radiation tail and the

longitudinal cross sections are minimized so that
transverse cross sections may be measured in
the relative absence of other contributions. ' The
data taken for the 15.11-MeV level at 180 proved
to be of better quality than those taken at 140 for
which the region betmeen the 15.11- and 16.11-
MeV peaks was filled in by a broad background
possibly resulting from the excitation' of a level
at 15.4 MeV. Also the extraction of cross sec-
tions for the 12.7-MeV. Also the extraction of
cross sections for the 12,7-MeV level was easier
for the 180' than for the 140 data because of the
suppression of neighboring longitudinal excita-
tions. Representative spectra taken near peaks
of the form factors are shomn in Fig. 1. The
data were corrected for Coulomb distortion ef-
fects, "so that they could be compared with plane-
wave Born-approximation calculations. A de-
tailed discussion of the experimental technique
and analysis procedure will be present elsewhere. "

The resulting 15.11-MeV form factor is shown
in Fig. 2 together with all previous measure-
ments that we judge to be reliable. " The present
data define the diffraction minimum and the high-

q behavior of the form factor, and thus comple-
ment many earlier measurements primarily
clustered at low q.

Our present analysis of the 15.11-MeV form
factor follows that of Ref. 5, and supersedes it
because of the full inclusion of the data reported
here. Our aim is to use only experimental in-
formation in describing the. transition so as to
derive the lp-shell density matrix. ' Higher con-
figurations than 1p typically contribute 12—15$
to the levels of interest as was found in a full 2h~
calculation. In this 1p-shell approximation the
one-body contribution to the Ml form factor is

~ Z,(q) ~'= [8q'/(ZM„)'] [f~'(q)f, '(q) e "(A+By)' ],
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FIG. 1. Excitation spectra for the 12.71- and 15.11-
MeV transitions to C by 180'-electron scattering.

for harmonic-oscillator single-particle wave
functions, where MN is the nucleon mass, Z the
nuclear charge, f sN the single-nucleon form fac-
tor, f, ~ a center-of-mass correction, and y
=(qb/2)', with b the oscillator parameter. Thus,
as discussed in Ref. 5, the M1 form-factor data
determine 6 and two constraints, A and B, on
three combinations of the 1p-shell density matrix
elements: g,i, ,i„g,i, ,i„and g,i, ,i, —y, i, ,i,.

After computing the meson exchange corrections
to Eq. (1) we have determined b (1.813 fm),
A (0.477), and B (—0.341) by fitting the data shown
in Fig. 2. Two additional constraints on the den-
sity matrix are provided by the experimental @,-
capture and P-decay analog transition rates.
Using these, we find tel,i, ,i, = -0.121+ 0.020,
g,g2, ,y2

—g,i, ,i, =0.291 &0.010, and j,i, 3i, = 0.087
+ 0.010. Effectively this analysis separates the
orbital and spin-flip contributions to the M1 form
factor. We also obtain P,i, ,i, + g,~, ,i, = -0.15,
with a large associated uncertainty of +0.50.

In Fig. 3 the measured 12.71-MeV form factor
is compared with the results of two calculations
using wave functions of good isospin. One calcu-
lation is the shell-model Cohen-and-Kurath (CK)
result" for the (8-16) 2BME potential, which dif-
fers only slightly from results with either the
(6-16) 2BME or (8-16) PQT interactions. In
addition, two full 2he nonspurious shell-model
calculations' which use a combination of CK, Kuo-
Brown'~ (KB), and either the Millener-Kurath"
(MK) or Gillet" (6) potentials have been per-
formed with one result shown in Fig. 3. These
form factor s, in contrast to the 15.11-Me V case,
are quite sensitive to the interference between
the orbital and spin components of the transition
operator. This leads to a suppression of these
form factors at low q, and relatively large sec-
ond maxima. We believe that there is consider-
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FIG. 2. The 15.11-MeV form factor. Solid circles
are the data of this experiment, and open circles those
of other experiments (Ref. 5). The solid curve was ob-
tained as described in the text, and includes meson-
exchange currents. The inset shows the 180 -Coulomb
distortion correction used to obtain the points shown.

able agreement among various theoretical pre-
dictions for this isoscalar strength and remarka-
ble disagreement between these results and ex-
periment.

On the other hand, extensive arguments'"
have been advanced in support of the validity of
the CK shell-model wave functions for "C. We
are thus led to consider whether the systematic
disagreement between our calculated form fac-
tors and experiment can be explained in terms of
isospin mixing. We have repeated the above
shell-model calculations with full inclusion of the
Coulomb interaction in order to test whether a
two-level mixing approximation is valid. For all
of these calculations approximately 85%%u~ of the
isovector component of the 12.71-MeV state is
generated by mixing with the 15.11-MeV state,
which has a large fraction of the isovector M1
strength to the ground state. Thus under the as-
sumption that any additional components in the
charge-dependent Hamiltonian H cD will mix lev-
els similarly, we can make the two-level mixing
approximation:

I12 71&=(1—p')" IT=o&- pl T= I&,

with p= (T=1lHcnl T=O&/~. Since the mixing
is weak, the unperturbed energy separation ~
is equated to the observed doublet splitting of
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2.40 MeV. Furthermore, because of the weak-
ness of the isoscalar component, the measured
15.11-MeV form factor can be assumed to repre-
sent the isovector transition accurately. Thus,

FIG. 3. Shell-model predictions for the &2.71-MeV
form factor compared with the present data. The solid
lines show the (8-16) 2BME prediction and the dashed
lines the CK-KB-G prediction. The upper curvt.'s in-
clude ksospin mixing with amplitude P as given in Table
I but the lower curves do not. The inset shows the
180'-Coulomb-distortion corrections used to obtain the
points shown.

given a model for the isoscalar strength, the data
of Fig. 3 provide stringent constraints on the
single unknown parameter (1 ~H CD ~

0).
Values of j3 deduced by performing a y' fit to

the 12.71-MeV data are shown in the last column
of Table I. Good agreement is found with one of
the solutions obtained by fitting only to the radia-
tive width with the procedure found in Refs. 3
and 6. The second solution obtained in this man-
ner is clearly ruled out. In addition, the present
fit certainly provides a much more stringent test
of isospin mixing: A single parameter, (1

~ Hcz&~ 0)
= 140+35 keV, removes the large discrepancy be-
tween and experiment over a wide range of mo-
mentum transfers, yielding a form factor with
the proper magnitude at both maxima as well as
correctly defining the position of the diffraction
minimum. The error we assign to (1 ~H cz ~

0) is
statistical; the model dependences of this result
may be seen in Table I.

Our result for (1~H cD ~
0) is smaller than the

250+ 50 keV originally obtained' from "C(d, d') "C,
but is consistent with the value of 179+ 75 keV
from the more recent measurements of Lind eI; al. '
As discussed above, our value, 140*35 keV,
agrees with that obtained from measurements of
the radiative width, ' 130+26 keV, although ne-
glect of meson-exchange-current calculations in
a previous analysis' yielded a somewhat smaller
matrix element of 110+30 keV. " On the other
hand, our theoretical evaluations of (1~He,„,~0)
employing harmonic-oscillator 1p shell-model
wave functions give matrix elements of approxi-
mately 60 keV, much smaller than the experi-
mental determination. This discrepancy can be
removed, at least in part, by employing more
suitable shell-model bases, for instance a 1p-
shell basis of Woods-Saxon wave functions. "

TABLE I. Mixing parameters p determined from various model calcu-
lations of the isoscalar~ strength. The first column gives pairs of solu-
tions determined by fitting only I'z (12.71 0.0) while the second column
gives the single solutions obtained when we fit, in addition, the data pre-
sented in this Letter. An oscillator parameter 5 =1.60 fm (as favored by
the fitting procedure) was used in the model prediction of the isoscalar
form factor.

Model P(y only) p(p+(e, e ))

CK (8-16) POT
CK (8-16) 2BME
CK {6-16)2BME
FULL 2I'u) (MK)
FULL 2+~ (G)

-0.202 + 0.055; 0.057+ 0.016
-0.203 + 0.055; 0.055+ 0.015
-0 201+0 055 0 058+0 016
-0.191+0.052; 0.067+ 0.018
-0.201 + 0.055; 0.058+ 0.016

0.056 + 0.016
0.054+ 0.015
0.057+ 0.016
0.069 + 0.018
0.059 + 0.016
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Alternatively, harmonic-oscillator single-particle
wave functions can be retained if the model basis
is expanded sufficiently. Employing the MK 28~
oscillator wave functions, we find (1 iHc«&i 0)
= 85 keV, which may indicate that the long-range
nature of the Coulomb force requires even fur-
ther expansion of the shell-model basis. On the
other hand, the remaining disagreement between
the experimental (l. iH cD i 0) and the theoretical
(1 iH c,„& i

0) could also be attributed to the exis-
tence of a charge-dependent component in the
strong interaction.
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