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and Z bosons mill have to be accompanied by com-
parably massive fermions. Nonetheless, the fa-
miliar corrections of perturbation theory to the
tree graph amplitudes, proportional to g m /M',
remain small.

Besides the bound-state Higgs particles that
get absorbed, there will be at least one Higgs
particle which does not disappear from the spec-
trum. This bound state will be essentially indis-
tinguishable from an elementary Higgs field.
Conceivably it could be almost exclusively a
bound state of either heavy quarks or heavy lep-
tons. Then the Higgs particle would decay pri-
marily to hadrons or quarks, respectively.

In the standard SU(2) SU(1) model with elemen-
tary Higgs scalars, the mass of this physical
Higgs field is given by

where X is the quartic Higgs coupling. In our
dynamical model, this coupling can be calculated
as a loop effect, and to lowest order is given by

y =3g'tan 8,

so that

m„'= 12tan'8 m '.
This completes the calculation of all the mass
ratios in the standard SU(2) S U(l) model in terms
of the gauge couplings.

It seems difficult to show that the irregular so-
lution is actually the one that minimizes the vac-
uum energy in weak-interaction models. This is
tantamount to proving that dynamical symmetry
breaking actually occurs. However, it is clear
that there already exist weak isodoublets of quarks

and leptons with large ultraviolet masses. Wheth-
er these ultraviolet masses are described by the
irregular solution or not, they will contribute to
the W and Z masses from the ultraviolet regions
of the integrals (3a) and (3b) [although heavier
fermions are probably required to saturate the
sum rule (6)]. The existence of these massive
fermion doublets is sufficient to ensure the M = —,

'
rule.
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It is argued that the parton distribution function (P i~(x, kz, &) is well defined and useful
in quantum chromodynamics. Here & =(2P~ n) /(-n ) arises as a variable because of the
use of the axial gauge n A = 0. An approximation for (P,y~(x, kz, g) is given which is ob-
tained from an approximate solution of the Bethe-Salpeter equation in the axial-gauge lad-
der model.

There has recently been great progress" in
deriving an improved version of the parton mod-
el (including scaling violations) from quantum
chromodynamics (QCD). One can now derive
from QCD the improved version of those results
in which, in the original parton model, only the

parton distributions (P,I~(x) =Idskr (P,I~(x, Rr) in-
tegrated over transverse momenta appear. In
this paper, I adapt the line of argument of Ref. 2

to include the Drell- Yan' process at measured
Qr, a process that is sensitive to the full parton
distribution (P,I„(x,kr). This argument is quite
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straightforward and follows the program outlined
by Collins. ' I then present a model for (the non-
singlet part of) (P,t~(x, Rr) that may be valid in
QCD for large Rr. This model is based on an ap-
proximate solution' of the renormalization-group-
improved ladder-model Bethe-Salpeter equation
for the flavor nonsinglet Green's function to find
a far —off-shell quark in a hadron.

The conclusions that I will draw are as follows:
(a) The parton distributions (P,i„(x,R~; f) are

well defined in QCD, before or after integration
over Rr.

(b) These distributions enter the leading-order
formula for high-mass dimuon production in just
the way predicted by the Drell- Yan parton model
for this process.

(c) The preceding conclusions depend on the
use of the axial gauge n„A" (x) =0, where the
gauge vector n& remains fixed as viewed in the
reference frame in which the momenta of the
problem are being scaled up. The parton dis-
tribution functions depend on the variable g„-=(2P~' n) /(-n'). That is, in contrast with the
original parton model, the distribution of partons
in a hadron depends on how fast the hadron is
moving. Of course a proton is a proton no matter
how fast it is moving. What changes as (P„' n)'
increases is the definition of a parton.

(d) Also in contrast with the original parton
model, (P,i„(x,k» P„) does not fall to zero very
quickly as k~' becomes large: roughly speaking,
6'cckr 2. However, (P falls to zero whenkr'=fz

Let us begin with the discussion of dimuon pro-
duction: A+ B- p.'+ p, + X, where A. and B are
spinless or unpolarized hadrons. Choose the
c.m. frame with the z axis along the beam direc-

FIG. 1. Class of diagrams for dimuon production con-
sidered in this Letter.

tion. Then P„+ =P~ = ($/2)'t2 P„=Pe+ =P„r
=0. (Hadron masses are neglected. ) Let

Q" denote the dimuon momentum. I consider
the limit S- ~ with Q/S, Q+/Q, and ln'(Q /
Qr')/in(Q'/p, ') fixed. In order to make use of the
regularity theorem of Bef. 2, I work in the space-
like a.xial gauge n„A" (x) =0, n' = —1, with the
components of n& in the c.m. frame fixed as S

As a convenience I choose n+ = n =2 ' ',
5~ =0.

I assume~ that graphs for dimuon production of
the form shown in Fig. 1 are the most important
in S — limit. By definition, the hard-scattering
function II is amputated on all four legs and is
two-particle irreducible in both the A. and B
channels. In order to simplify Fig. 1, use the
renormalization group to rewrite H as

H(k„, ke, Q;g) =e "e p(x-41dwy~[g, (t)]jH[e 'k„, e 'ke, e 'Q; g(t)],

where e" = S/p, ' and p, provides a, reference momentum sca.le. In the Drell- Yan limit, e 'Q& is fixed.
The momentum e k„ is integrated over but [with use of some information about C„(k„)discussed in
Ref. 5 and below] we can surmise that the most important integration region is that in which e k„ is
a finite, nearly lightlike vector in the + direction. Similarly, e 'ke is "usually" a finite, nearly
lightlike vector in the —direction.

Since g(t)~1/t- 0 as t- ~, the higher-order terms in the expansion of H in powers of g(t) can be
neglected compared with the lowest-order term unless the higher-order terms contain compensating
factors of t. The regularity theorem of Ellis, Georgi, Machacek, Politzer, and Boss' assures us that
in the axial gauge, H is not singular as (e 'k„)' or (e 'ke)' tends to zero, so that no compensating fac-
tors like ln[(e 'k„)'/g'] ~t can occur. The higher-order terms in H can, however, be singular when
e 'k„", e 'kz&, e 'Q", and n" all lie in the same plane: k„=Re =Q =0. Such "coplanar" singular-
ities are not discussed in the regularity theorem of Bef. 2. In the first-order correction to II such a
singularity does indeed occur. (I thank J. Collins for a helpful discussion of this point. ) The singular-
ity is strong enough to modify the lowest-order cross section if Qr' is too small compared with Q',
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but has a negligible effect in the "modestly large" Q~' limit in which 1n'(Qr'/Q')/in(Q'/p') is fixed as
Q'- ~. This region is of physical interest because, at least in the model proposed here, most of the
cross section at large Q' comes from "modestly large" Q~'. (I will discuss the first-order correction
to II and its effect in more detail elsewhere. ) Thus, although a proof to all orders is lacking, it seems
plausible that II can be replaced by the lowest-order term in its perturbative expansion:

W"" S~, e,aj( ", ; (2}T)'5'(k„+k~ —Q) exp[-4fd~y~[@(7')]]Tr[4,~„(k„)y"e~~~(k~)y']. (2)

We now use two simple and highly plausible pieces of information about the functions C',g&(k„) and

4;~s(k~) (see Ref. 4 and below). First, in the important integration region discussed earlier, k„
=x„P„",the Dirac structure of C},~„(k) is C',y„J&y, so that C,g~(k„)-y 4Tr[y'C, ~„(k„)]. Second, the
range over which ks can vary before@;ys(ks) vanishes is large [of order Ps =(S/2)' ]. On the other
hand, the range over which k„can vary before C,~„(k„)vanishes is small. [It is not as small as one
might think; we will see later that the effective cutoff imposed by &,y„(k„) is Ik„ t& Ik„ I.] Therefore
we can replace fdk 4'~„(k

)Czars(Q

-k ) by fdk C,~"„(k )&7s(Q ) T.he corrections to these two ap-
proximations are smaller than the terms retained by powers of Qr'/S. Similar results hold, of course,
with the roles of A. and B, + and —,interchanged.

These replacements give for the dimuon cross section

li'A 3 (1+cos*8})Z,e, fdkz *fdkz ll(k„+%+ —Q }6g„(x„',k„;};,„}

+8/B ( 8 ~ ~B } ~B)~

where x„Q+/P„+, xs = Q /P~ . Here

where g„=(2P„n)'/( n') an-d f =21n(f„/p'). With our choice ofn„, f„=f~ =S. If 6'(x, kr;f) is inter-
preted as the parton distribution function, this is exactly the parton-model prediction" for the cross
section.

The interpretation of (P (x, kr, g) as the parton distribution function can be supported by another argu-
ment. In canonical field theory quantized on the surface x+ =0,' the operator fdx d%r exp[i(k+x
~ %~)]$(0)y+((0,%z, , x ) counts the number of quarks with momentum k+, kr at "time" x+ =0. The expec-
tation value of this operator in hadron state IP„) is (P,y„(x,R» &) as given by Eq. (4) with y~ set equal
to zero.

In view of the role played by 6'(x, %» f) it is evidently of interest to try to estimate this function for
large k~' in quantum chromodynamics. For this purpose we first need detailed information on the
function @(k), which I have evaluated approximately (4 ", for the flavor nonsinglet channel) in a recent
paper. ' There I argue that, in an appropriate large-k" region, the Bethe-Salpeter equation that 4
obeys can be approximated by the ladder-model Bethe-Salpeter equation with a running coupling con-
stant at the vertices. I then solve this equation using "leading log" approximations that are valid in
the limit f ~, —2k'P- ~ with —2k'P& f and with x=k+/P", y =km/2k ~ P, and 1nm[f/(2k ' P)]/ln(f/p')
fixed. In this limit, 1/ln(f/p') «1, 1/ln[(-2k'P)/p, '] «1, and In[&/( —2k'P)]/In(f/p') «1 but (-2k P)

The conjecture is advanced in Ref. 5 that the ladder model itself is a good approximation under
these same conditions, but this conjecture remains unproved.

Let us now approximately evaluate the integral (4) for N "s(x,R» f) with the approximate solution from
Ref. 5 inserted for 4" (k). To keep the discussion simple, I drop all the terms in 4 that turn out not
to contribute in the r„-~ limit. I also modify the function C (k) that emerged naturally from the ladder
model to a slightly different function that is more convenient for our present purposes and is equivalent
to that of Ref. 5 in the limit described in the preceding paragraph. The result is

4 2 "d(- 2k P) 1+x'/y'
3 77I} in(g/p2) 2k ~ P k 2

( 2k ~ P)2/g

P = ~ (2/I}) In'[&/(- 2k P)] /In(f/p, ').
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Here b =11——,Nz, P indicates a principal-value
prescription, and (P (y;f) is the nonsinglet part
of the probability to find a parton a with momen-
tum fraction y in hadron A. , as measured in deep-
inelastic lepton scattering with a probe of space-
like virtualness —q' = f.

In the integration region —2k ~ P( (kr'f)'i' the
integration is essentially fd in( —2k ~ P) over a
wide range of ln( —2k ~ P) with an integrand that
is slov ly varying (until a lower cutoff to be dis-
cussed in a moment is reached). When (kr'()""
(—2k ~ I-', the integration gains another factor of
(- 2k ~ P) ' and is quickly cut off. Thus the de-
nominator factor in (5) can be replaced by (I/kr')
x 0((k 'g)' ' —(- 2k p)). Consider now the vari-
able y-=k'/2k ~ P =x+kr'/(-2k ~ P). Over most of
the integration region k~' « —2k ~ I' and thus y =x.
But when —2k ~ P approaches kr', y suddenly [on
a In(-2k ~ P)scale] increases to 1. At this point
the integration is cut off because d'(y; g) = 0 when

y &1. Thus we replace y by x everywhere and

supply a factor 9[(-2k P) —kr']. (Notice that
problems arise if x is very near 1.)

These approximations give

6 "(.x,k„g)-4"'(x; P)(1/k, ')G(k, ', C), (6)

G(k, ', g)

=@4/zb)[ln(g/p')] "'f„dx exp[- p(2/b)x'],

~ = In(g/k, ')[In(Z/q')] '". (7)

We should, of course, only trust the function
G(kr', f) for large kr'. Nevertheless, it is reas-
suring to note that the normalization integral for
G is fd'krkr 'G(kr', f) =1, exactly. Thus Jd'kr
x 6'(x, kr; g) =6'(x; p). The behavior of G (kr', g) is
illustrated in Fig. 2.

The general conclusions that I draw from these
results have been stated already in the introduc-
tory paragraphs. Here I wish to add a few tech-
nical comments. First, the general parton-mod-
el formula for dimuon production, Eq. (3) with no

approximation introduced for (P(x, %» f), appears
to be valid to first order in 1/ln(S/p') for "mod-
estly large" Qr'. Second, it seems plausible that
the approximate formula (6) for 6'(x, kr; &) is val-
id in the limit p —~ with x and In'(0/k r')/In(l/p')
fixed, but this conjecture remains speculative un-
til more is known about the corrections to the
axial gauge ladder model used in obtaining C (k).
Third, the factorization of the k~ dependence in
Eq. (6) appears to be an artifact of the approxi-
mations used. I do not expect this feature to hold
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FIG. 2. The parton transverse momentum distribu-
tion obtained from the ladder model, G(kr, g) =k& 6
x (x, k;g)/(pN~lx;g), for g = 1 Tev, p, = 0.1 Gev, Nf
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in general. Fourth, the Drell- Yan process has
been studied, with use of the ladder model in axi-
al gauge, by Dokshitser, D'Yakonov, and Troy-
an. ' If one inserts Eq. (6) for d'(x, kr; f) into the
general formula (3) for the Drell-Yan cross sec-
tion, the result, after some further Inanipula-
tions and approximations, is essentially that of
these authors. Dokshitser, O'Yakonov, and Troy-
an, ' however, give a dramatically different inter-
pretation to this result. Fifth, Parisi and Pe-
tronzio' have obtained a slightly different form
for der/d~Q by use of an independent-soft-gluon
emission model. Sixth, it may be difficult to
measure the slowly varying part of Qr' depen-
dence of dv/d'Q for dimuon production, but the
asymptotic power behavior, ' Qr ', should be de-
tectable in future experiments at high enough en-
ergy so that there is a substantial range of Qr'
available between 1 GeV' and Q'.
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It is shown that the special leading-logarithm structure of the solution to the renor-
malization-group equation enables one to obtain a reasonable estimate of the still un-
known terms of order (1nq ) & . Implications of this result on future tests of quan-
tum chromodynamics at short distances are discussed.

In the last two years' ' much effort has been
put into calculating the precise pattern of scaling
violations. ' Indeed, as quantum chromodynamics
(QCD) emerges as the theory of strong interac-
tions, one can foresee in the future very precise
tests of the theory by carrying out of experiments
that are intended to check not only its qualitative
features but also its precise quantitative predic-
tions. What exactly would be the theory's "g —2"
test is still an open and interesting question, but
it may very well be one test or another of its
well-understood short-distance behavior.

The exact evaluation of high-order terms in the
scaling-violation pattern in QCD amounts to cal-
culating the high-order loop contributions to the
renormalization-group functions P (g) and y(g) and
the coefficient C&". Though the calculations are
in principle straightforward, they are extremely
tedious and are an extraordinary task already at
the two-loop level. Fortunately, this task had
been achieved in the valuable calculations of Refs.
1 and 2. The number of diagrams that had to be
calculated approaches one hundred and it will
grow by about one order of magnitude at the three-

loop level. Therefore, it may very mell be that
for a long time to come the calculations of Refs.
1 and 2 will be the most detailed ones available.
Thus, if the complete three-loop calculations are
to be missing for a while, it would be interesting
to have a semirough estimate of what we can ex-
pect for the contributions of the next order term
which is of order (lnq') & '.

The typical scaling-violation pattern of the
structure-f unction moments in deep-inelastic lep-
ton scattering has the form' '

M. (-q/A)=f d5h" '+ (5, q/A')
—C)"( q /p g )(g~ 0("~~ g) (1)

where only the leading twist-two operator 0" is
shown and only a single such term appears on the
right-hand side of Eq. (1) if i is the flavor nonsin-
glet part. The matrix element

1'JJ (q') - fde e""(a ~ Z(,) Z(p) j a)

of the two currents (weak or electromagnetic) in
the target state

~ 0) satisfies a renormalization-
group equation and thus C,"(-q'/p', g) is ex-
pressed in the following form':

C,"(-q'/p', g ) =C,"(-q /A') ~A, "(g ) "(1+g '[C,
~

"' '+C, "' lng ']

+g 4[C "' '+C, "' & lng +C "' ~ lng 'J+

=&~"(g ')"" 2 Z C. "' ' g '"(lng ')'
k=o q «0

where

gp' = [pp ln(- q'/A')] ', d„=y„(~/2pp, A' = p' exp — ', lug'+ ———+ Z
&Pp p — j=1
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