ERRATA

ELECTROMAGNETIC EFFECTS NEAR THE SUPERCONDUCTOR-TO-FERROMAGNET TRANSITION. E. I. Blount and C. M. Varma [Phys. Rev. Lett. 42, 1079 (1979)].

In Eq. (1), p_0 should be replaced by $\frac{1}{2}p_0$.

The sentence containing Eqs. (3) and (4) should read as follows: "If, however, $|\psi| = 0$, we set H = 0, which is a simple and reasonable approximation for a multidomain sample in vanishing applied field; then $B = 4\pi M$ and the free energy density is"

In Eq. (9), the expression in brackets should be squared.

We are indebted to Dr. M. V. Jarić for pointing out these errors.

TWO-PHOTON ABSORPTION IN ZINC-BLENDE SEMICONDUCTORS. C. R. Pidgeon, B. S. Wherrett, A. M. Johnston, J. Dempsey, and A. Miller [Phys. Rev. Lett. 42, 1785 (1979)].

Equation (11) should read

$$f(\alpha) = \frac{16}{45} 3^{3/2} [(2\alpha - 1)^{3/2} / \alpha^5].$$
(11)

in agreement with the functional form given by Basov $et al.^1$ for parabolic bands.

DUALITY, SOLITONS, AND DILUTE-GAS AP-PROXIMATION IN THE ONE-DIMENSIONAL X-Y MODEL WITH SYMMETRY-BREAKING FIELDS. Jorge V. José and Paramdeep S. Sahni [Phys. Rev. Lett. 43, 78 (1979)].

Equation (8) should read

 $V_T(x) = 2E_p(x \cosh x + \coth x \operatorname{csch} x - 3 \operatorname{csch} 2x)$

 $-3x \operatorname{csch}^2 x \operatorname{coth} x - x \operatorname{coth}^2 x \operatorname{csch} x).$

The Jacobian of the transformation given in Eq. (2) has been computed recently by Apel *et al.* [Z. Phys. B <u>34</u>, 183 (1979)]. When using this result in evaluating the free energy to lowest order in $R[\varphi, I]$ and to all orders in y_P , we obtain the

same result as in Ref. 11.

In Eq. (14) replace $V_T(x)$ by V(x), where

 $V(x) = 2\left[\frac{1}{2}x \operatorname{csch} x - \operatorname{coth} x \operatorname{csch} x - \operatorname{csch}^2 x\right]$

 $-x \operatorname{csch}^2 x \operatorname{coth} x - x \operatorname{coth}^2 x \operatorname{csch} x].$

These modifications do not alter any of the conclusions of the paper in the asymptotic limits considered.

ANISOTROPIC He-C PAIR INTERACTION FOR A He ATOM NEAR A GRAPHITE SURFACE. William E. Carlos and Milton W. Cole [Phys. Rev. Lett. 43, 697 (1979)].

Our attention has been drawn to a paper by G. Bonino, C. Pisani, F. Ricca, and C. Roetti, Surf. Sci. 50, 379 (1975). This introduces anisotropy into the rare-gas-carbon attraction. The form is quantitatively, but not qualitatively, different from ours.

NON-OHMIC ELECTRICAL CONDUCTION IN THE HIGHLY ONE-DIMENSIONAL SEMICONDUC-TOR METHYLTRIPHENYLARSONIUM TETRA-CYANOQUINODIMETHANE. Patrick M. Lanahan and T. J. Rowland [Phys. Rev. Lett. <u>43</u>, 879 (1979)].

In the second column on page 880, below Eq. (4), the fraction of sites with charged imperfections should be replaced by 14×10^{-6} .

SPONTANEOUS-FIELD-INDUCED OPTICAL SECOND-HARMONIC GENERATION IN ATOMIC VAPORS. Kenzo Miyazaki, Takuzo Sato, and Hiroshi Kashiwagi [Phys. Rev. Lett. <u>43</u>, 1154 (1979)].

Equation (2) is in error (missing a minus sign) and should be replaced by $\overline{\sigma} = -(8\pi)^{-1}(E^2 + B^2)\overline{1} + (4\pi)^{-1}(\epsilon \overline{EE} + \overline{BB}).$