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V=O, z &y(R),

where y(H) is the corrugation function or the sur-
face profile, B and z being the parallel and per-
pendicular components of the surface position
vector. The HCWP with a potential well having
an attractive long-range part" (z ') gives a good
picture of the structures (minima or maxima) ob-
served experimentally in the diffracted peaks in

The integral equation of the scattering is solved exactly for a one-dimensional ex-
ponential corrugated potential. Numerical results are presented for a sinusoidal and
a triangular profile of small amplitude. As the "slope" of the exponential increases
the intensities given by the hard corrugated wall are approached. The finite slope of
the potential has the strong effect of forcing the particles into the specular peak and
tends to reduce the effect of multiple scattering.

In the scattering of light neutral atoms by a the vicinity of condition for which resonance with
crystalline surface the diffraction-peak intensi- bound states can occur.
ties calculated with use of a hard-corrugated- On the other hand, these observed resonances
wall potential (HCWP) are successfully' compared allow the determination of the potential energy
with the experimental data. The HCWP is writ- levels. Then one usually tries to deduce a poten-
ten as tial shape or more precisely its zero-order Fou-

rier component which gives the best fit to theV= z&y R
bound-state energies. One generally finds that
this can be well represented by a Morse" or a
9-3 potential. ' Recently, more elaborate forms
have been proposed, for instance, the shifted
Morse hybrid potential, ' so called because it is
given by a Morse form at short distances and by
an attractive z ' form far from the surface.

In spite of the uncertainty which arises in a po-
tential shape determined only by a limited number
of bound-state energies one would expect that the
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(,. =4,. +(E,. —0, +i@) '(V —v)(I(;, (2)

with H, = —(h2/2m)V'+ v and v = C exp(- Xz). The
eigenvalues e~ and eigenfunctions 4~(z) of If, are
well known':

e =[(@x)'/8m]p', &= xp,
C (z) =[p sinh(np)/1[]'~'K; (y),

y =[(8mC)'~2/XI2] exp(- —,'Xz),

where K,~ is the modified Bessel function of the
second kind with imaginary order ip It is.readi-
ly shown that K - 0 in the limit z -—~ and for z

!
iP

repulsive region has a finite slope allowing a cer-
tain degree of wave penetration into the solid.
This phenomenon, which is not allowed by the
HCWP, has been modeled by introducing the so-
called soft-wall potential [V= V„z &g(B)].' How-
ever, a more realistic picture seems to be given
by the exponential corrugated potential (ECP) de-
fined by

V = C exp(- X [z —y(R)]],

which in the limit X -~ gives the HCWP. In the
following we develop the one-dimensional solu-
tion to this potential and discuss some interesting
numerical results pertaining to recent experi-
ments in the scattering of atoms by metal sur-
faces.

We start with the integral form of the Schrodin-
ger equation in the bvo-potential formalism:

C~= sin(-,'Xpz —a~),

n~ = arg{(2mC/X%2)'~ '/I'(1+ ip)].

Also one can show that the normalization inte-
gral behaves like

5' C, .(z)4,(z)dz =~(L),
where for L large, b, —0 for p'&p and 6-2L for
p'=p. Therefore the corresponding projection
operator is given by

with

Taking the limit I -~ one finds

P = f. Ic-.(z)&(~,(z) dp.

Then the condition PI@~& = IC~& gives us the nor-
malization factor

5 - C'p (z)Cp(z)dz =(7]'/X)&(p-p').

The solution of Eq. (2) with use of Eqs. (1) and
(3) is obtained by expanding g,. as

(,=+~ exp[i(K,. +G)X](~(z),

4,(z) = f.f,(p)~,(z)dp.

One obtains

(4)

where M is the matrix element (4'~ v4~ &, v~ ~ is the Fourier component of the exponential corrugation

vz ~ =-foexp[X+(X)]exp[- i(J -G)X]dX,
0

p, '=(4/x'Xlk, l'- «, +~)'] =(4/x')~~. '.
As usual G and J are reciprocal-lattice vectors, and k,. is the incident wave vector with component K,.
parallel to the surface.

The latter integral in Eq. (4) is readily solved analytically. Then one takes the limit z -~ which
gives

$g(z ~) = 5go sin(~2Xp;z —o(;)+Ay exp[1(k Jzz u/)) ~ p J

with
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and the diffracted intensities are given by

I =/1+2iA f', Ig =4k', (k,,) 'fA~f .
Then remains the task of determining the unknown functions bG. This is achieved by taking the expecta-
tion value of Eq. (4) with the set of states f4 ~ ]. One obtains an infinite set of coupled integral equa-
tions, namely,

~z(P ) 5J.&(P.-P;) + , -, ". Z(~.-. 5—,.)fo dP &.(P)[P»nh(e)]' '
PJ P~ +i6 6 cosh vP ) —cosh(mP

In order to get a numerical solution one con-
serves only a given number N~ of reciprocal-lat-
tice vectors which obviously should include at
least all the G vectors corresponding to the open
diffraction channels. Further, one limits the in-
tegration to a valueP«=PP~ (P&1), Pz being
the maximum real value taken by any of the P~.
The segment [O,P~~] is then divided into N~ equal
intervals 0 =P«(N~) ' and the continuous func-
tions bG(P) are replaced by the discrete set

&c„=f.c &c(&+'.

In this way we have a matrix equation, the ma-
trix to be inverted being of size N =N~ & N~. As
discussed below our numerical results verify that
the obtained solution is convergent, that is to say
that the calculated intensities are stable and the
unitarity approaches 1 as N increases.

If we write the amplitude of the corrugation
function y(x) as ha then the Fourier components
~~ ~ are increasing functions of the dimension-
less variable Xha. Therefore as this parameter
increases it is necessary to increase N~, and
with the largest matrix size which can be inverted
in our computer (N = 225) we are limited to aha
values approximately equal to 0.1. A more effi-
cient procedure is needed in order to increase
the yea domain of obtainable solutions. However,

within the range Xha «O. l the calculated precision
of the diffracted intensities is better than 1/g as
shown by the results in Tables I and II.

Table I gives results for a sinusoidal profile.
The h and a values have been chosen in such a
way that the HCWP calculation displays approxi-
mately the observed, experimental upper limits
on the intensities for Cu(100) in the 1 and 1 peaks.
One sees that the introduction of a finite slope
has the strong effect of forcing the particles into
the specular peak. Particularly we notice that
for given values of the intensities in the 1 and 1
peaks in the h value must be greater for the ECP
than that used in the HCWP. One can notice that
as X increases the HCWP solution is approached.

Table II gives results for a triangular profile
of height ha. The apex of the triangle is located
at 0.75a. The y value has been put equal to the
value which is usually found in the coupled-chan-
nel calculation. ' As in the preceding case the
comparison to HCWP calculation indicates that
the diffracted peak intensities are reduced and
the specular one is increased.

From these two examples one may conclude that
the finite slope of the repulsive part of the poten-
tial and the consequent wave penetration tend to
reduce the effect of multiple scattering. However,

TABLE I. Besults for the scattering of He by a sinusoidal profile, h& sin{27tx/a), 0,
= 0.11x 10 cm ', a = 2.55x lp 8 cm, h= 0.002, &with an incident angle 45'.

G channel 0.1x 10
y (cm ')
0.3x 10~ 0.5x 10' HCWP

-2
-1

0
1

Unitarity

0.22x10 33

0.15x 10 26

0.93x10 "
0.39x 10 &7

0.51x 10
0.68x 10
0.42x 10 6

1.000 002 1
p. 14x Ip ~

1.000 002 5

p 2x 1p- 25

p. 16x 10 20

0.11x10 "
0.26x 10
p. 58x 1p- &0

0.14x 10 6

0.41x 1p ~

1.000 58
p.31x 1p 4

1.001 04

0.24x 1p 24

0.55x10 2O

0.25x 10
0.66x10 "
0.19x 10 ~

0.51x 10 6

0.10x 10
1.001 33

p.21x 10 3

1.002 56

p.11x10 "
0.73x 10 '~

0.51x 10
0.65x lp &3

0.4x10 '
0.12x 10 5

0.19x 10 2

0.997 243
0.81x 10 3

1.000 000 00
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TABLE II. Results for He scattered by a triangular profile of height hg and
perpendicular incidence. The apex of the triangle is located at 0.75@. y labels
the exponential corrugated potential with y =0.2x10 cm, 0

&

—0.11x10 cm ',
g = 1.93 x 10 cm.

Q channel
h =0.01 h =0.015

HCWP

Unitarity

0.22 x 10
p.54x1p '
0.65 x lp

0.9860
0.59 x 10
0.78x10 '
0.57x10
1.000 00

0.1 x10 "
0.13x lp
0.4 x 10
0.99945

0.38x10 '
0.37x10 4

0.32 x10
1.007 34

0.36 x10 '
0.11 xlp
Q.15 x10

0.968 92
0.128 x10-'
0.19 x 10
0.153x 10

1.000 00

0.72 x 10
0.195 x10
0.85 x 10

0.998 75
0.77 x10 '
0.95 x10 '
0.].15 x ].0-'

1.0150

before being considered as a general rule this
conclusion should be supported by a more extend-
ed set of numerical calculations. The most close-
ly related method of determining the wave func-
tion (4) is the close-coupling method which has
been applied to the surface scattering problem by
Wolken. " The close-coupling calculation' consists
of a step-by-step direct integration in real space
for determining the perpendicular wave function
go(z). In order to make the calculations tractable
the close-coupling methods have been restricted
to relatively small numbers of Fourier compo-
nents in the potential. Hence, it is difficult to
compare directly with the calculations presented
here since the corrugated exponential potential
contains all Fourier components. Therefore the
potentials used in these two calculations are sub-
stantially different. The method developed in this
paper, although specially applied to the corrugated
exponential potential, is quite general and can, in
principle, be applied to any form for the interac-
tion. The perpendicular wave function (o(z) is
projected onto the space defined by the solutions
of the zero-order Fourier component of the poten-
tial and then the problem is solved in that trans-
form space. In many cases, expansion in such a
basis set will be much more convenient and faster
than direct numerical integration.

As a final remark we mention that the corrugat-
ed exponential potential (1) was chosen because of
its simplicity, and no less importantly, because
all of its matrix elements can be readily evaluat-
ed. In order to introduce an attractive well at the
surface the same methods can be used for the

Morse potential since the corresponding matrix
elements are also known. Of course, as men-
tioned in the above paragraph, the techniques ap-
plied here are good in principle for any general
form of the potential and it appears that under
certain conditions such calculations could be car-
ried out with quite a reasonable amount of numeri-
cal work.

This work was initiated while one of us (J.R.M. )
was a visiting scientist at the Centre d'Etudes Nu-
cleaires de Saclay.
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