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For isolated gravitating systems of physical interest, the difference between the Arno-
witt-Deser-Misner four-momentum and the Bondi four-momentum associated with a re-
tarded instant of time is shown to equal the four-momentum carried away by the gravita-
tional radiation emitted between infinite past and the given retarded instant.

For about fifteen years, there have been avail-
able in general relativity two distinct notions of
energy-momentum for isolated systems: the Ar-
nowitt-Deser-Misner' (ADM) four-momentum
and the Bondi" ' four-momentum. The first of
these quantities is a fixed four-vector having the
interpretation of the total energy-momentum, in-
cluding all contr ibutions from the gravitational
field itself, while the second is a four-vector as-
sociated with each retarded instant of time and
represents the four-momentum "leftover" at that
retarded instant after allowing for gravitational
radiation. That these interpretations are correct
has been a basic assumption underlying a variety
of investigations in general relativity. For ex-
ample, the theoretical prediction that gravitation-
al waves do carry away energy-momentum, and
that the energy so carried is positive, depends
quite crucially on the meaning attached to the
Bondi four-vector has led to a long series of
analyses concerning the sign of its "time compo-
nent. " Note, however, that a simultaneous validi-
ty of the interpretations associated with the two
quantities is a nontrivial requirement: The two
interpretations are incompatible unless the ADM
four-vector equals, in a suitable sense, the sum
of the four-momentum radiated away in the form
of gravitational waves until any given retarded
instant of time, and the Bondi four-vector evalu-
ated at that retarded instant. Although the ques-
tion of the relation between the two four-vectors
was raised4 immediately after their introduction,
very little progress has been made on this issue
over the years. The principal difficulty has been
the following: Whereas the ADM four-momentum
refers to the asymptotic properties of the gravi-
tationa1 field at large spacelike separations from
sources the Bondi four-momentum refers to

properties at large null separations.
Recently, however, a new framework was intro-

duced'' to obtain a unified treatment of the prop-
erties of the gravitational field in the two asymp-
totic regimes. In this Letter, we shall use this
framework to resolve the issue of the relation
between the two four-vectors.

We begin with the notion of asymptotic flatness
to be used throughout this analysis.

Definition'. —A space-time (M,g„)will be said
to be asymptotically empty and flat at null and
spatial infinity if there exists a space-time, (M,
g„), with g„everywhere C except at a point i'
where it is C ', together with an imbedding of M
into M (with which we identify M with its image
in M) satisfying the following conditions:

(~) M-M =Z(io);
(ii) there exists a function, 0, on M such that

on M, g„=O'g,» on J(i'), 0 =0; on J(i')-i', V,Q

(iii) there exists a neighborhood V of J(io) in M,
such that (N, g„) is strongly causal and time ori-
entable; and, in ÃAM, g„satisfies the vacuum
equation R„=0.

Denote J(i') —i' by 8. It can be shown' that 8
so defined is endowed with the familiar" struc-
ture of null infinity and that the associated Lie
algebra of infinitesimal asymptotic symmetries
is the Bondi-Metzner-Sachs (BMS) Lie algebra.
Fix any cross section 8 of O'. The Bondi four-
momentum P evaluated at S belongs to the dual
of the four-dimensional vector space 7 of BMS
translations. (Throughout, Greek indices will re-
fer to T and Latin ones to M.) The expressions
available in the literature' for P hold only in
Bondi (conformal) frames Since the. se frames
are incompatible with conditions imposed at io,
we first extend these expressions to arbitrary
frames:

&n& =(Il»&)f~t*&,g,„&~'I'—(q, q,
"——,'g.,q ")(p'I')(oR „—2cnv I „+2s a„n)e„]d&"

1979 The American Physical Society



VOLUME 43, NUMBER 3 PHYSICAL RKVIKW LKTTKRS 16 JUx.v 1979

for all elementsK of v. Here, X~'=an'-=nV'0
is the vector field on 8' representing the BMS
translation K; „is the metric induced by g„
on S; 8 is the derivative operator, and e,„-
=e„„n'1', the alternating tensor on {S,q„); I'
is the null vector field defined at each point of S
by 0'.bl ' =0 and l 'n, = —l; 4' = +V,n' is the diver-
genCe Of 8 i abc'& V~ ~ab~ and Kabcy=&abmnC cu

are, respectively, the alternating tensor, the de-
rivative operator, the Ricci tensor, and the dual
of the Weyl tensor of g„. Equation (1) holds in
any conformal frame compatible with conditions
at 8+. In a Bondi frame, simplifications occur:
One has 4 = 0 and ~, ~b ~q„, and hence the right-
hand side of Eq. (1) reduces to the familiar" ex-
pression involving 4,' and 0'.

The ADM four-momentum P„on the other hand,
is a covector in the tangent space T&o, of i'.''
Hence, to obtain a relation between P and P„we
must set up an isomorphism between 7. and v;o.
Fortunately, a nat&zp$ isomorphism does exist."
To see this, note first that since 8=7(i') —i',
there is an obvious isomorphism g from the ac-
tion of the BMS group on the space of generators
of 8 and the action of the Lorentz group in the
tangent space of i'. Since each BMS time transla-

~

323'(a& ~
—+K

~ ~X» I -a(q q~ —2q~~q ){V / )

on 8,. To define &u„ in a neighborhood of J(i'),
we must extend fields X~', e, l„q» and &„ to
this neighborhood. We begin with extensions to
O'. Set, on 8', n'v, l, =-cl, and gab gab+2n( lb).
The fields l, and q„now satisfy l ~ l =0, q„l'=0,
and, l n=-1 everywhere ona' and define a slic-
ing of 8' by a family of (topological but not neces-
sarily metric) two-spheres. Furthermore, since
n'V, o. =4 o. , on each of these spheres, o. is con-
stant and tends to zero as one approaches i' along
8'. Next, we extend these fields off 8'. Intro-
duce a smooth foliation of a neighborhood of 8' by
spacelike three-surfaces which intersect 8' in
the above family of two-spheres. Extend the sca-
lar field a to this neighborhood by demanding that
it be constant on each of these three-surfaces. It
then follows that the foliation admits an extenstion
to a neighborhood of J(i') such that the leaf a =0,
passing throughi, is C' and orthogonal to K' at
i'. Next, consider timelike hypercylinders C,
defined by 0 =» (a constant) in this neighborhood.
The C„'s intersect each three-surface n = const
in a family of two-spheres. Let q'„denote the
intrinsic metric on these two-spheres and e„ the
natural alternating tensor. Define l' in this neigh-

tion singles out a SO(3) subgroup of the BMS ac-
tion on the space of generators and since each
time-like direction at i' is characterized by a
SO(3) subgroup of the Lorentz action on T&o, the
mapping g defines an identification between time-
like directions in 7 and those in T&o. Finally,
since each of T and T~o is equipped with a natural
I orentz metric, this identification leads to a
unique (metric preserving) isomorphism P be-
tween T and T,o.' Using this P we can now ask the
desired question: Does P[P„(S)+(bP~),o~], with
(bP ),o the four-momentum radiated away be-
tween i' and S, equal P, P

We can now answer this question. Fix a cross
section S, of 8' and a BMS time translation K .
The key idea is to introduce a two-form, &„, in
the physical space-time with the property that its
integral on a two-sphere tends to P K as the
two-sphere converges to S„and to P,K' as the
two-sphere converges to i', where K'=g(K").

It is convenient to work with a conformal frame
which satisfies, in addition to the definition, the
followinp conditions: (i) 4 =—&V,n' = const on the
part of J(i') enclosed between i' and S„and,
(ii) a, n =8,(-X»'I ) =0 on So. (Such frames al-
ways exist. ) It is then natural to set

(a.„-2C v„E„)~„ (2)

bdg = V( b ) d5
SKS K

where 6, is the part of C, bounded by S„a.nd S,
(see Fig. 1). We now take the limit as» tends to
zero. Since u„ is continuous in a neighborhood
of S, and S, is compact, Eqs. (1) and (2) yield

Iim J ~.,dS"= j ~.,ds &=P.K .
K~0 SK So

(4)

Similarly, using Eq. (2), the expression" of the
ADM four-momentum P, in terms of the Weyl
curvature, and the fact that a =0 on any S„one

borhood by l l =0, q„l'=0, and l.n =l'V, Q =-1.
Finally, we extend XE'. Denote by K' any exten-
sion of the vector K' at i', which is C' at i' and
smooth elsewhere and which satisfies K n =4a.
Set X»' = —20K'+~(K n)n'. ' (The diffeomorphism
generated by this XE' induces a BMS translation
corresponding to K on 8 and the Spi translation' '
corresponding to K' at i'. Hence it is a natural
extension of en'~&. ) The two-form v,, is now de-
fined throughout a neighborhood of J{i').

On the cylinder C„we have
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obtains:

lim J ~„dS"=lim (1/32m) J K,~„Xz' &
~dS'"

K ~0 SO K~p SK

(5)

Finally, Eqs. (3), (4), and (5) imply that lim„
f~ V&, ~„&dS'"must exist. Unfortunately, since
we have no assurance that the various fields
which enter V&,w„& remain bounded as one ap-
proaches i along S', and since j(i ) —i (on
which V&,u„j is smooth) is not compact, we can-
not, in general, conclude that this limit must
equal J~ Vt, &u„ldS'"; this last integral need
not even be finite t Hence, for the class of iso-
lated systems considered so far, although the
ADM and the Bondi four-momenta exist, their
difference need not be related, in a simple way,
to the four-momentum carried away by gravita-
tional radiation. However, it is easy to show
that if the news tensor,

N, g =(q, ql,
"—-—'q, g q"")(R„„—24 V l„),

is such that a' ' x(N„N"), with e positive, re-
mains bounded as one approaches i' along 8', or,
equivalently, if in a Bondi frame, u'" x ieo'/sup
remains bounded, one has

lim f V~, e„~dS'"
K~0

V[g+~~)dS' '
0

-=(1/32&) J nN „N "el,~l,ldS' '.
0

The integral on the right is precisely the Bondi
flux" between i and S,. Since K is an arbitrary
BMS time translation, from Eqs. (3)- (6) we
have the following: Given an isolated: system
whose underlying space-time satisfies the defini-
tion, the ADM and the Bondi four-momenta ar e
related via P, = g{P (S,)+(bP„);0 ') provided the
Bondi news satisfies the above condition as one
approaches i along i|'.

Remarks. —(i) That an additional condition is
required on the falloff of Bondi news is perhaps
to be expected: In the definition, only minimal
conditions which ensure that the ADM four-mo-
mentum is well defined have been intorduced at
i'. In particular, the metric g„ is assumed to
be only C' as one approaches i' along 8'. It is
easy to show that if one demands that the metric
connection should admit regular direction-depen-
dent limits not only along spacelike directions
(the present C" condition), but also along null
ones, the Bondi news automatically satisfies the

~~C&d
Svrface

4(~ 0
~«&ac'e

PIG. 1. As K tends to zero, the cylinders CK (defined
by Q= ~) converge to J (i ), the two-spheres SK to the
given cross section 80 of g, and the two-spheres SK

to i'.

required conditions. However, it is not yet clear
whether or not this condition on the connection is
substantially stronger than the required condition
on the news. (ii) The condition on news itself ap-
pears to be quite weak. For example, qualitative
arguments" for systems which coalesce from un-
bounded distances indicate that such systems will
satisfy this condition by a wide margin. More
generally, the expression of the total radiated en-
ergy suggests that its finiteness will ensure the
required falloff of Bondi news in a generic case.
(iii) The assumptions in the definition that g„ is
C" on 8 and that g,& satisfies the vacuum equa-
tion in M/)N can be substantially weakened. A

discussion of this issue as well as of other as-
pects of the relation between null and spatial in-
finity will appear elsewhere.
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