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The local atomic environment around the iron site was measured in reduced and in

oxidized dilute alloys of Fe in Cu. For these measuremements a new detector was em-
ployed that extends applicability of the technique of extended x-ray-absorption fine
structure to systems a hundredfold more highly dilute than those heretofore accessible.
Details of the alloy study and implications for other research of the high sensitivity of
this detector system are discussed.

Extended x-ray absorption fine structure (EXAFS)
was first observed more than forty years ago, '
but until the availability of the intense continuous
radiation from electron synchrotrons EXAFS was
not widely used for structural investigation.
Even with this radiation source the method has
not been applicable when the concentration of the
species of interest in a host of roughly the same
atomic number is less than about I at. /o. In a sys-
tem with a high-Z absorber in a low-2 host the
limit is reduced roughly by the ratio of the ab-
sorption cross section of the host to that of the ab-
sorber. This would correspond, in a biological
system, to a transition metal species at a concen-
tration of about 0.01M. A new technique, by
means of which the concentration limits are low-
ered by as much as a factor of 100, is described
below. Dilute Fe in Cu has been studied with this
technique and the results of the study are pre-
sented.

When an alloy containing very small amounts of
Fe in Cu is annealed in oxygen, the low-tempera-
ture resistivity is found to be much less than that
of hydrogen-reduced material. ' For the 75-ppm
Fe-Cu specimens used in this study the resistivity
reduction factor is about 1800. This effect has
been ascribed to clustering of the iron impurities
during oxidation, which reduces the electron-im-
purity scattering. ' The experiments discussed
here, designed to study local environments around
the Fe atoms in reduced and oxidizied states of
this alloy, demonstrated that clustering indeed oc-
curs upon oxidation, and provided the detailed
structural information given below.

Variation of the absorption cross section of a
species above a critical edge may be measured
by effects on any of several quantities: transmis-
sion, fluorescence, Auger-electron yield, total
electron yield. To attain the highest sensitivity
for a minor constituent species in the bulk of a
host material, x-ray fluorescence is generally
best suited. Sensitivity limits at high dilution
are set by signal-to-background ratios. With a
specimen such as 75 ppm Fe in Cu this ratio
would be extremely unfavorable; the fluorescence
intensity is roughly only 10 4 times that of scat-
tered radiation. Thus, for example, even with a
photon-energy-sensitive semiconductor detector
the Fe x-ray signal would be less than 1/0 of back-
ground.

With the technique described here, however, it
is not difficult to achieve an improvement in sig-
nal-to-noise of about 10 and in dilution limit of
about 10'. This improvement results from filter-
ing the radiation from the sample before it reach-
es the detector with a focusing crystal analyzer
designed to pass, in this ease, only the Fe K
x-ray fluorescence wavelength.

In Fig. 1, this analyzer, based on a Rowland
circle geometry, ' is shown schematically. The
crystals are installed on the inside of a barrel-
like surface of revolution formed by rotating an
arc of radius Ry, equal to the focal Rowland-cir-
cle diameter, about the axis joining the sample
(source) and detector. From the midpoint of the
arc, the distance perpendicular to the sample-
detector axis is R, =R, sin'0&, where ~& is the
Bragg angle for the fluorescent radiation. A
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at room temperature. The sum of several spec-
tra, collected in a total of typically 200 min, af-
ter a linear background subtraction are shown,
together with their Fourier transforms, for both
the oxididized and reduced alloys in Fig. 2. Stan-

Flo. 2. (a) The observed EXAFS spectra from the ox-
idized alloy of 75 ppm Fe in Cu (lower curve) and hydro-
gen-reduced alloy of 75 ppm Fe in Cu (upper curve) af-
ter a linear background subtraction. (b) Fourier trans-
forms of the net spectra after background subtraction,
weighted by ~ (electron wave vector) but without phase-
shift correction. The dashed curve is for the oxidized
alloy and the solid curve for the reduced alloy.

FIG. 3. Heavy curve: The back-transformed data
from the first peak in the transform of the oxidized al-
loy. The shaded area coves the range of fits resulting
from varying RF, &=1,95 A by +0.025 g.

dard analysis and fitting procedures" were ap-
plied. In particular, after background removal,
the spectra, weighted by A, are Fourier trans-
formed into R space, shown in Fig. 2(b). The
transforms are then mu1tiplied by a smooth win-
dow function' and back-transformed to k space, '
Fourier-filtering the data. The fitting is then
done in 0 space, with use of the theoretical ampli-
tudes and phase shifts of Teo and Lee' and scale
factors from model systems. The back-trans-
formed data for the first peak in the transform of
the oxidized alloy and a range of fits correspond-
ing to R F, o of 1.95+ 0.025 A are shown in Fig. 3.
The data fall neatly between the two curves repre-
senting excursions of 0.025 A from 1.95 A for the
iron-oxygen distance. The diff erences in ampli-
tude between the fitted curves and the data are

TABLE I. Near-neighbor distances 8, coordination numbers N, and Debye-Wailer factors 0. observed in KXAFS
measurements for the atom pairs in the oxidized dilute alloy of 75 ppm Fe in Cu. For comparison, data are given
for the equilibrium forms of Fe compounds which have been suggested (Ref. 3) as constituents of this material.

O 0 0
2 0

2 '2'+Fe-Fe (A) +Fe-Cu (A) +Fe 0 (A) +Fe-Fe +Fe-Cu +Fe O oFe-Fe (A ) +Fe-Cu (A ) +Fe 0 (A &

75 ppm Fe in Cu,
annealed in 02

Feo
Fe304

CuFe204

3.09 +0.02
3.04
2.96~
3 47b

3.62'
2.96

2.90 + 0.02 1.95+0.02
2.15
1 81
2.09

2.09

8+2
12

6a

12
4c
6

4 + 2 0.06 +0.005 0.06 +0.005 0.05 + 0.005
6
48
6b

' These superscripts designate corresponding coordination numbers and atom pairs.
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due in part to electron mean-free-path effects.
Effects of these differences on near-neighbor
counts are small compared with the uncertainties
quoted in Table I.

For the reduced alloy, the data yield the results
12+ 2 near-neighbor Cu atoms at 2.54+ 0.1 A and
a Debye-Wailer factor 0.080+ 0.005 A. There
was no indication of Fe near neighbors around Fe.
The distance, very close to that in pure Cu, 2.556
0

A, and the near-neighbor count together consti-
tute independent indication that the iron atoms
are isolated from each other in the Cu matrix.
This is a condition consistent with the relatively
high resistivity in the reduced state.

In published work, ' the steps proposed for the
oxidation process are based on the partial pres-
sures of oxygen required to form oxides from
the pure metals. With increasing oxygen pres-
sure, oxidation in the alloy should progress
from Fe to FeO to Fe,04 but not further to Fe,O,
because Cu, O formation intervenes. Measure-
ments of remanent moment and Curie tempera-
ture have led to the suggestion that copper fer-
rite, CuFe, 04, is the species produced in alloys
containing 50 ppm or more of Fe'. EXAFS spec-
tra obtained in these experiments for the oxidized
alloy exhibit Fourier transforms, Fig. 2(b), hav-
ing two distinct peaks and the contributions to
each could be determined. Results are shown in
Table I, where coordination numbers, near-neigh-
bor distances, and Debye-Wailer factors are giv-
en for Fe-Fe, Fe-Cu, and Fe-0 atom pairs. Al-
so tabulated are near-neighbor distances for FeO,
Fe3O4, and CuF e,O,. Compari son of the sets of
data shows that none of the equilibrium Fe com-
pounds which have been proposed as constituents
of the oxidized alloy can be identified in it, even
though oxidation of the specimen, as judged by re-
sistivity, was complete. Fe atoms appear to be
clustered with Fe and have Cu and 0 near neigh-
bors as well. The differences between interatom-
ic distances seen in Fe-Cu alloy and those char-
acteristic of the iron compounds must arise from
the nature of the alloy environment in which the
Fe clusters form; large local strains, for exam-
ple, may exist.

In summary, a new EXAFS detection scheme
has been tested in the study of internal oxidation
of a dilute alloy of Fe in Cu host. A considerable
extension of the limits of dilution to which the
EXAFS method is applicable has been demonstra-
ted. This new fluorescence filtering detector
should be advantageous for studies of surface
structure (SEXAFS)" as well as for investigation
of structure in dilute chemical and biological sys-
tems. "
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