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Strong minority proton heating is produced in the Princeton Large Torus through ion-
cyclotron resonance damping of fast waves at moderate rf power levels. In addition to
demonstrating good proton confinement, the proton energy distribution is consistent
with Fokker-Planck theory which provides the prescription for extrapolation of this
heating regime to higher rf power levels and other minority species.

Earlier attempts to heat relatively small, low-
current tokamaks with waves generated at fre-
quencies in the vicinity of the second-harmonic
cyclotron frequency of the majority ion species
of a two-ion plasma have resulted in heating effi-
ciencies in the range ot 20-40% and an enhance-
ment of particle recycling into the plasma. ' '
These results have been attributed to poor con-
finement of energetic ions and to surface heating

by the excitation of wave modes with large elec-
tric fields and field gradients in the plasma peri-
phery. 4 In higher current tokamaks, improved
energetic ion confinement and proper selection
of propagating modes should reduce considerably
the surface heating. 4 In this Letter, we present
heating results for the two-ion regime obtained
at moderate rf powers (~70 kW) in the Princeton
Large Torus (PLT) which demonstrate the ex-
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pected improvement in ion confinement and, fur-
thermore, support the prospect that the minority-
ion cyclotron damping can be employed to heat
large-scale plasmas in accordance with theory.

In recent years, the importance of the two-ion
hybrid resonance on fast-wave damping has been
observed in several tokamaks"' and has re-
ceived considerable theoretical analysis. ' ' %hen
the minority ion concentration is sufficiently high,
mode conversion occurs at the two-ion hybrid
resonance and leads to wave damping by both the
electrons and resonant ion species. For example,
for minority hydrogen in deuterium, mode con-
version occurs when'

r&„(P,T„/2T.)"S,(4/3+ S,'),
or for helium-3, we find

tl„a(P,T„/2T,) ' ' S ii(12/5 + S~'),

where g„=n„/n„S—= kc/&u~„with u~~ the plasma
frequency in deuterium, and k ~ and k

ll
are wave

numbers along the toroidal and total magnetic
field, respectively. At lower concentrations,
mode conversion is absent, but the residual ef-
fect in the two-ion hybrid zone on wave polariza-
tion enhances minority fundamental damping and
shifts the peak of the damping toward this zone. "
Even for minority concentrations and 4 ~ values
which lead to mode conversion at low rf power
levels, it is clear that there will be a tendency
for direct damping to dominate at high power
levels as the proton P increases, which in turn
depends on the division of the mode-converted
wave energy among the plasma species.

In the initial heating experiments on PLT, we
have employed a single half-turn antenna located
at the larger major radius perimeter of the plas-
ma to generate waves having dominantly m = 0, +1
azimuthal mode numbers. Although this antenna
gives a broad spectrum of k ~, the wave disper-
sion properties in the plasma" favor excitation
of intermediate k ~(-5 —15 m ') values for the
moderate densities studied —g, ~(1—1.5) xl0"
cm '. An excitation frequency of 25 MHz has
been used and the resonances have been posi-
tioned at selected major radii by choosing the
level of the toroidal magnetic field on axis,
B,(ft,).

The first observations of heating were made
for a deuterium plasma with a few percent (-3%)
of hydrogen concentration which resulted in re-
latively strong wave damping at low rf power.
The equilibrium discharge characteristics were
I ~= 230 kA, y~ = 1.3 V, 6,= 1 x 10" cm ', e, (0)
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FIG. 1. Time evolution of central values of electron
(~ 10 cm), deuterium (4 charge exchange, I neutrons),
and hydrogen (charge exchange for E &5 keV) tempera-
tures for application of the rf wave power pulse shown
and the discharge conditions noted in the text.

=2x10" cm ', T, (0) =1.4 keV, T~(0) =T„(0)=0.4
keV, Tx -16 msec, Z, f~-2 —2.5, and BgR,)
= 16.4 kG which places the cyclotron layers on
axis. Upon application of a 60-msec, 30-35-kW
average rf wave power pulse, an increase in P ~
of 5-10%was observed on the diamagnetic loop
and no perceptible changes occurred in n„v~,
and the light and heavy impurity concentrations.
The heating characteristics observed for the
plasma species are shown in Fig. 1. Electron
cyclotron-emission measurements (supported by
soft-x-ray data) showed strong initial increase in
electron temperature (bT, -140 eV) which dimin-
ished considerably during the remainder of the
pulse. This electron temperature increase was
observed for r(15 cm, while for r)20 cm, T,
stayed roughly constant or fell slightly. Mass-
sensitive charge-exchange and neutron-flux meas-
urements indicated a deuteron temperature in-
crease of -80 eV. The deuteron spectra had no
energetic ion tail, indicating the absence of sec-
ond-harmonic cyclotron damping. However, the
hydrogen charge-exchange spectra reveal that
the protons were strongly heated as indicated in
Fig. 1 by the average temperature of the ener-
getic hydrogen spectra between 5 and 40 keV
(Fig. 2). Such strong heating of the hydrogen

1803



VOLUME 4), NUMBER 24 PHYSICAL REVIEW LETTERS 10 DECEMBER 1979

15 I I I I
i I I I I J

I I I I
1

I I I 1.0

10 10

10

0 I I I I I I I I I I I I I I I I I i I

0 10 20 30
ENERGY (keVj

40

IO
0 10 PO

ENERGY (keVj
50 40

FIG. 2. Hydrogen charge-exchange spectrum at 370
msec of Fig. 1. The theoretical curve shown is for
Z~ff =2.2, E, =1.8 keV, and ( =13.8.

can account for both the electron and deuteron
heating characteristics. Mode conversion dis-
appears for a broad range of k ~ when the hydro-
gen temperature rises to a high value, such that
the protons dominate the wave damping (main-
taining the absence of toroidal eigenmodes). The
reduction of mode conversion results in a strong
reduction of direct electron heating, and the deu-
terons are heated primarily via ion-ion coupling
with the hydrogen.

The decay of this energetic hydrogen distribu-
tion after the rf pulse occurs over a period of -50
msec which is -200 times longer than for the de-
cay of the energetic distribution in the ST toka-
mak and is consistent with the thermalization
time for the energetic ions to equilibrate with the
deuterons. Thus the expectation that the ener-
getic ion confinement should no longer be plagued
by severe banana-orbit loss cones is validated
on PLT up to 40 kev.

Since the rf fields damp out before reaching the
mass-discriminating analyzer location (@=160'
from the antenna), the energetic ions cannot re-
sult from local rf acceleration and are therefore
toroida. lly precessing (banana trapped) ions.
Spectra obtained with a horizontally scanning
charge-exchange analyzer (without mass discrim-
ination), located in the vicinity of the antenna and
viewing approximately perpendicular and parallel
to the plasma axis, are given in Fig. 3 for a -60-
msec, 60-70-kW average rf wave power pulse
and somewhat higher n, as noted. The low-ener-
gy regions of the spectra are attributable to deu-
terons and the high-energy regions to protons as

FIG. 3. Hydrogen plus deuterium spectra for direc-
tions approximately perpendicular and parallel to the
plasma axis averaged over the latter 50 msec of a 60-
70-kW, 70-meec rf wave power pulse. (n~ = 1.5&&10~3

cm +g f f 3, and 4T d
= 140 eV.) For the theoretical

hydrogen curve shown, E, =3.3 and ( =10.4.

determined from simultaneous spectra from the
mass -discriminating analyzer. ' To within the
sensitivity of the analyzer (parallel energy up to
E = 25 keV) the parallel and perpendicular ener-
getic proton distributions are essentially iden-
tical, revealing a very nearly isotropic velocity
distribution.

The heating of passing particles is augmented
by the fact that the fundamental cyclotron damping
peaks in the two-ion hybrid region, away from
the cyclotron layer, where finite v

i~
is required

for resonance with the wave frequency. However,
the isotropic distribution is a consequence of
collisional pitch-angle scattering and the quasi-
linear diffusion effects for wave damping on the
protons. The Fokker-Planck analysis of Stix"
for minority damping can be applied directly to
characterize the experimental velocity distribu-
tion" and to prescribe its extrapolation to other
plasma conditions.

Noting that the treatment of Stix is evaluated in
terms of the local rf power density (&) so that
the shift in the location of the peak damping does
not alter the formalism (even with mode conver-
sion present) and ignoring the effect of charge
exchange loss, we find that the equilibrium dis-
tribution in the isotropic regime is given by Eq.
(84) of Ref. 13 and is characterized by the param-
eters

m„&p) 2&T. "
8v'~'n n e lnA m
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and

m„kT~ 1+B~+ $

m, (4/3~"')(1+ ()
(2)

where 8,= Z—,tt(rn„T,/m, T, ) is assumed. E„and
T, (1+ $) are best determined experimentally in
the case where R, »1+ ( (when ion-ion coupling
to the deuterons dominates the proton energy loss)
by employing the measurements of Z, ~f, T„and
Te to give one relation between Fd and T, (l+ $),

and by using the effective temperature T,ff meas-
ured at a large energy, to give a second relation, "

T ff T (1+ 5)I1+ /
(T, /T, )(1+ () —1

1+ E F.
„

Distributions obtained in this manner are com-
pared with the experimental spectra in Figs. 2

and 3. This characterization appears to be valid
out to -40 keV for the conditions studied, al-
though the theory of Ref. 13 predicts that the dis-
tributions should begin to deviate significantly
from isotropic at energies higher than -20 keV.

In the comparison of Fig. 3, the proton distribu-
tion is separated from that for deuterium. This
permits the calculation of the proton concentra-
tion with the result n„/n„=7% (in reasonable
agreement with rough estimates based on mass
spectrometry). From this value of concentration
and the $ parameter of Fig. 3, (~)-0.09 W/cm'.
It is not possible to specify the power deposition
profile or the deuteron heating efficiency prior
to making radial scans of the proton and deuteron
spectra. However, assuming that all the deliv-
ered rf power (-70 kW) is deposited within uni-
form (LP) within a power deposition radius r„
we obtain r0 ~18 cm, suggesting relatively strong
localization (a. parabolic squared profile gives
r, =23 cm). Under these conditions, approximate-
ly 30o/o of the rf power is coupled into the deu-
terons with the remainder being accounted for
by losses through charge exchange and through
the electron loss channel.

The parameter $, Eq. (1), can be experimental-
ly adjusted by choosing the electron and minority
densities for a given level of rf power and elec-
tron temperature to favor majority-ion heating
through ion-ion coupling ((T,ff) a 15 T, ). Such
control has been maintained up to a power level
of -100 kW, and additional injection of hydrogen
gas has been observed to decrease the effective
proton temperature as predicted.

With regard to plasma species relevant to reac-
tor operation, the wave-heating physics for T-D
operation can be simulated on PLT with 'He-H
and approximately with 'He-D. An energetic pro-
ton distribution has also been produced in a 'He
discharge (D in T) in the absence of a second-
harmonic layer. Thus, minority deuterium cyclo-
tron damping is shown to be a possible heating
mechanism for use in T-D operation.

No similar energetic deuterium distribution
has been produced for fundamental heating of a
minority concentration of deuterium in a He dis-
charge (T in a D discharge) at the prevailing high-
er residual levels of D and with the modest pow-
ers applied. This may be due to the, for this
case, different wave-dispersion topology. How-

ever, further experimentation is required to dis-
cern the true importance of the changes in the
wave properties from the 'He-H case.

In conclusion, direct minority cyclotron damp-
ing is found to dominate the two-ion ion cyclotron-
resonance frequency heating regime in D-H and
'He-H majority-minority plasma at moderate
minority concentrations and rf power levels in
PLT. Well confined, approximately isotropic
minority distributions have been produced and

controlled with the level of the minority concen-
tration to produce significant majority-ion and
electron heating through ion-ion coupling and elec-
tron drag and/or Landau damping, respectively.
The results indicate that this heating process can
be applied to heating via D, H, 'He, and 'He

minorities in tritium plasmas.
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