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Monte Carlo Renormalization Group and Ising Models with n ~2
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%e suggest that the Monte Carlo renormalization group, when combined with the type of
cell-spin transformation introduced by van Leeuwen, should be a powerful tool in the study
of Ising models with n -2. Numerical results are presented for the Baxter model and the
Ising model with nearest- and next-nearest-neighbor interactions on a square lattice.

The suggestion of Ma' to combine the ideas of
the renormalization group' with Monte Carlo sim-
ulations has recently been carried forward by the
development of a new calculational approach. "
Results obtained encourage the belief that the
Monte Carlo renormalization group (MCRG) has
wide applicability in the study of phase transi-
tions. The method has yielded reliable approxi-
mations to transition temperatures and critical
indices, and has been able to distinguish first-
order from continuous transitions. In particular,
the critical exponents of the nearest-neighbor
Ising model in two' and three' dimensions have
been calculated in good agreement with known re-
sults. Moreover, the three- component Potts
model has been studied in two, ' three, ' and four'
dimensions. In two dimensions a continuous
transition was found as expected, ' while in three
and four dimensions the transition was determined
to be first order.

In this note we emphasize that the MCRG, when
combined with the type of cell-spin transformation
introduced by van Leeuwen, ' should be a powerful
tool in the study of Ising antiferromagnets whose
phase transitions are described by order param-
eters having n ~ 2 components. ' The specific
calculations reported here are for the Baxter

nn nnn

It is convenient to divide the lattice into two
sublattices A and B such that nearest neighbors
of spins inA are in&, and vice versa. The two
components of the Baxter model's order param-
eter are the A- and 8-sublattice magnetizations.
When

—2K, &K, &O,

the Ising model also has a bvo-component order
paremeter, whose components can be chosen to
be the A - and 8-sublattice antiferromagnetic
staggered magnetizations.

Using the MCRG and van Leeuwen's' cell-spin
transformation, we have computed the continuous

model, "and for the Ising model with nearest-
neighbor (nn) and next-nearest-neighbor (nnn)
interactions on a square lattice. The Hamilton-
ian for the Baxter model is" (K, &0)

H~= —K2 Q S,S, -K4 Q S,S,S~S, ,
nnn (g jul )

where a factor of 1/kT has been absorbed in the
K,-; 8&=+ I; the first summation is over nnn pairs
and the second is over spins lying at the four
vertices of a square. The Ising Hamiltonian is

H)=-K(QS)S) Km+ S)S
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variation of the critical index v upon K4 for the
Baxter model (Fig. I) and upon K,/)K, l for the
Ising model when (3) is satisfied (see Fig. 2).
The calculated values of v are consistent with
exact results" for the Baxter model, and with
the approximate renormalization-group analysis
of Nightingale" for the Ising model. We feel
that the MCRG is more easily applicable to three
and even four dimensions than the approach used
by Nightingale, which is based upon calculating
the correlation length of a finite strip with use of
the transfer-matrix formalism. In particular, it
would be very interesting to study the Ising model
with nn and nnn interactions on an fcc lattice.
Phani et aE."have recently considered the case
of antiferromagnetic nn and ferromagnetic nnn
interactions (n = 3-component order parameter)
with use of a Monte Carlo analysis. Further in-
sight may be gained by extending their work using
the MCRG. The case of ferromagnetic nn and
antif erromagnetic nnn interactions exhibiting
type-II antiferromagnetic order (n = 4-component
order paremeter) has been predicted to exhibit
a first-order transition on the basis of the ab-

sence of a stable fixed point in the e expansion. "
However, the type-II antiferromagnets CeSe and
CeTe have been found to exhibit a continuous
transition, " and so calculations directly in three
dimensions are clearly desired.

In addition to determining v, we have found g =&

independent of the interaction parameters for
both the Baxter model and the Ising antiferro-
magnet, iri agreement with what is expected on
the basis of scaling theories. " We have also
computed the crossover exponent y, correspond-
ing to nearest-neighbor exchange in the Baxter
model, and the anisotropic nearest-neighbor ex-
change in the Ising antiferromagnet. In the limit
when the A and 8 sublattices are decoupled, we
find agreement with van Leeuwen's result, and
our calculation shows that the crossover expo-
nent y, varies with the interaction parameters
in both the Baxter and Ising models (see Figs.
1 and 2).

The MCBG calculation'4 is based upon a MC
simulation to obtain a sequence of configurations
from which the necessary correlation functions
can be computed. The HG transformation is then

I. 2—

I
I

I.O —x—
TXX

I.O—

0.9—

0.9—

ISING
A NT I FE RROMAG NET

0.8—

0.?—

I.85— X I.80—

I. 80—

1, 75—

~X

X

I.75 —x-———

I. 70—
X

)

—0.2 0.0
I

0.2 0.4
I.70 0

I

0.5
I

I .0
K( /)K~)

I

f.5

FIG. l. s and y, vs E4 for the Baxter model. Solid
line indicates the exact (Ref. 12) values of v.

FIG. 2. p snd y, vs (K&/)X, I) for the Ising sntiferro-
magnet.
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applied directly to the individual configurations,
yielding a sequence of configurations for the cell
spins. For the Baxter model we use van Leeu-
wen's' RG transformation, obtained by dividing
the square lattice into cells consisting of a cen-
tral spin and its four next-nearest neighbors, as
shown in Fig. 1 of Ref. 8, and assigning the value
of the cell spin S,. =+1 according to the majority
rule. For the Ising antiferromagnet, the only
change in the RG transformation is to give the
central spin a weight of —1. The five spins in
a given cell all belong to the same sublattice,
A or &, and hence the two components of the or-
der parameter are treated separately. The scale
factor is b =v 5 and the eigenvalues of the RG
transformation have the form A. =b', where y is
called the eigenvalue exponent. We adopt van
Leeuwen's' notation for these exponents: The
crossover exponent is y„corresponding to near-
est-neighbor exchange in the Baxter model and

anisotropic nearest-neighbor exchange in the
Ising antiferromagnet; the thermal exponent is
yr = v '; the magnetic exponent is y„=(d+2 —q)/
2; y„corresponds to three-spin interactions and

yB to the direction along the Baxter fixed line.
Van Leeuwen' was able to determine the exact

values of these exponents in the limit of decoupled
A and & sublattices, by relating them to the ex-
ponents of the Ising model with only nearest-
neighbor interactions. In the decoupling limit
the MCRG yields results in excellent agreement
with the exact values for y„y~, yH, andy„. For
nonzero interactions between the sublattices the
MCRG seems well behaved and convergent to a
fixed point. Although our calculation is not good
enough to determine the marginal exponent y& = 0,
we do find the variation of the critical exponents
with the strength of the interaction coupling the

sublattices. Hence, we do find a line of fixed
points, but we are unable to calculate the cor-
responding marginal eigenvalue of the linearized
transformation. For the Baxter model, we have
found that a good approximation to the even ei-
genvalues is obtained by considering only matrix
elements involving nearest-neighbor, next-near-
est neighbor, and four-spin interactions. For
the odd eigenvalues, the applied field and a three-
spin interaction were sufficient. The inclusion of
four extra even and three extra odd interactions
did not lead to improvement, but appeared to
make the calculation more sensitive to finite-
size effects. The above remarks hold for the
Ising antiferromagnet, except that to obtain the
crossover exponent y~ it was necessary to in-
clude the anisotropic nearest-neighbor interac-
tion in the analysis of the linearized RG trans-
formation matrix.

The MCRG analysis of the Baxter model is
simplified by the fact that T, is known exactly, "
which allows the exponents to be determined from
a single MC simulation. In contrast, it was nec-
essary to determine T, for the Ising antiferromag-
net by watching the RG flows. "' For tempera-
tures about 1% above or below T„one clearly
sees the iteration towards high- or low-temper-
ature fixed points. To obtain greater accuracy
we chose T, to optimize convergence of the ex-
ponents. This procedure determined T, to about
0.2%, which is better than one is able to do with
conventional MC methods" or series expansions"
for this model. However, the remaining uncer-
tainty in T, introduces a corresponding uncertainty
in the exponents of the Ising antiferromagnet,
which is absent in the MCRG analysis of the Bax-
ter model. Our results for the critical coupling
can be parametrized as

-K„=0.440687+ (0.0312 + 0.0010)(K,/K, )' + (0.0084+ Q.QQ1Q)(K, /K )~. (4)

As an illustration of the convergence of our
results, we present in Table I MCRG data for a
Baxter model (K, =0.314091, K~=0.2) and an Ising
antif erromagnet (K, = 0.63'I5, K, = —0.510). For
the Baxter model, the MC simulation was per-
formed on a 100 &&100 lattice with periodic bound-
ary conditions averaged over 3 X10' MC steps/
site after discarding 4&10' MC steps/site. For
the Ising antiferromagnet, the MC simulation was
on a 100 && 100 lattice with periodic boundary con-
ditions averaged over 2 &&10' MC steps/site after
discarding 3 &&10' MC steps/site.

The examples presented in Table I were chosen

~
because they appear to converge to very nearly
the same fixed point, as seen by a comparison of
the eigenvalue exponents. In both the Baxter
model and the Ising antiferromagnet, y„remains
at its Ising value of 1.875, and within the accu-
racy of the calculation y„ is indistinguishable
from its value in the decoupled limit of 0.875.
The variation of y, and v with the coupling be-
tween sublattices is shown in Figs. 1 and 2. The
values of v in the Baxter model agree with the
exact results" also shown, and the values of v

for the Ising antiferromagnet are consistent with
Nightingale's" approximate calculation. We be-
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TABLE I. Two examples illustrating the convergence of the MCRG.

BAXTER MODEL ISING ANTIFERROMAGNET

Number
RG of

Iteration Couplings -1) yB yT(=. ") yB

1.7997
1.7999
1.7999
1.7999
1,7999

1.220
1.181
1.203
1.203

—.56
—.55

~ 55

1.8601
1.8628
1.8622
1.8624
1.8622

.645

.682

.738

.750

1.7684
1.7685
1.7685
1.7685
1.7684

1.203
1.138
1.142
1.143
1.146

—.51
—.51

~ 51
~ 51

1.8485
1.8463
1.8453
1.8442
1.8428

.658

.725

.761

.761

1.8014
1.8011
1.8011
1.8011
1.8011

1.256
1.250
1.257
1.256

—.63
—.65
—.67

1.8659
1.8666
1.8667
1.8667
1.8659

.808

.830

.849

.865

1.7955
1.7953
1.7950
1.7951
1.7951

1.224
1.231
1.244
1.243
1.241

—.67
75

~ 7 5
—.75

1.8723
1.8665
1.8665
1.8666
1.8668

~ 860
.886
.894
.882

1.8047
1.8053
1.8053
1.8053
1.8056

1.260
1.252
1.274
1.271

1.8677
1.8711
1.8713
1.8711
1.8700

1.7932
.837 1.7945
.877 1.7938
.892 1.7939
.908 ' 1.7940

1.253
1.231
1.241
1.238
1.229

—.48
—.51
—.51

~ 53

1.8785
1.8701 .870
1.8701 .908
1.8701 .923
1.8702 .919

Exact 1.248 1.8750

lieve that the results reported here suggest that
it will be fruitful to apply the MCHG to other Is-
ing models with n ) 2. The nature of the phase
transitions in many such models is at present
unknown, but of great interest;.

We wish to thank Dr. V. J. Emery, Dr. H. W. J.
Blote, and Professor L. P. Kadanoff for valuable
discussions.

Note added. —Our results are in excellent agree-
ment with the scaling relation" y, = ~+~y2.
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