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It is suggested that in a finite nucleus there may exist a condensed phase in which the
spins of the protons are all aligned in one direction and the spins of the neutrons in the
other and which has a lower energy than that of the normal phase above some density.
It is found that this critical density is a few times larger than the normal density and
that the nucleus will have a strongly oblate shape.

The possibility of a condensed state of pions in
nuclear matter and in finite nuclei has been the
subject of numerous studies. ' From the start, it
has been suggested' that such a state might exist,
even at densities around normal nuclear density

p o 0 5pp7, and that, due to the exist enc e of a fi-
nite critical momentum k„nuclear matter might
have a. laminated structure. This double obser-
vation has led to more detailed studies. As far
as the critical density is concerned, it seems at
present that, despite intensive efforts, ' one is
still far from being capable of predicting its val-
ue with reasonable confidence. The difficulty
comes mainly from the treatment of short-range
correlations, even more so when one is interest-
ed in the region of very high densities. From an
experimental point of view, even though a strong
condensation does not seem to exist in ordinary
nuclei, nothing has come to confirm, nor to con-
tradict, the existence of a weak condensation the
presence of which would not perturb their known
properties appreciably. It has also been suggest-
ed' that a condensed state might be formed in the
collision of two ions during which higher densities
might be reached. The question of the laminated
structure seems to be better understood, at least
for infinite nuclear matter, in particular, with
the help of recent works. ' It is demonstrated
there that this structure allows one to get the
most energy out of the tensor force, in agree-
ment with a previous work' in a somewhat differ-
ent context. The question is to see how one could
reconcile such a structure which is perfectly val-
id for an infinite system, with the known shell-
model structure of finite nuclei, i.e. , in the case
where one insists on maintaining this structure
even at higher densities. This Letter suggests a
possible solution. Specifically, we propose that
a condensed phase which we call spin-isospin den-
sity phase (SID) might exist which would have a
lower energy than the normal phase above some
critical density.

For illustration, let us consider only a sym-
metric nuclear medium N=Z and neutral pions.
Addition of charged pions can but reinforce the
conclusion obtained below as to the existence of
the phase transition. In the field description of
the nucleons and the pions, respectively, with
the field operators ((r) and y, (r), the condensa-
tion is intimately related to the existence of a
nonvanishing source function 5(r) defined by'

&(r) =- (0'(r) ~.o((r)&,

where ( & indicates the expectation value in the
condensed state. Using the mean-field approxi-
mation, it has been shown that the pion field
cp, (r) has a nonvanishing expectation value given
in terms of B(r) by

(&'-m ')(q (r)&=& &(r)

and that the energy of the condensed pions is sim-
ply given as the direct part of the expectation val-
ue of the one-pion-exchange potential VppE in the
given state.

For an infinite system, the source function 5 (r)
is obtained by assigning, on the one hand, the nu-
cleons to be localized in parallel layers, thus
creating a modulation of the mass density, and
on the other hand, the spins of the protons and
neutrons to be opposite on the same layer and to
change directions from one layer to the next, thus
giving rise to a modulation of the spin-isospin
density. It is clear that for a finite nucleus, if
one maintains its description as a system of in-
dependent particles, it is not possible to create
a modulation of the mass density in such an arti-
ficial way. Furthermore, if each one-particle
orbital state n was occupied either by a neutron
and a proton or by two neutrons (or two protons)
with the two directions of spins, then the source
function R(r) would vanish everywhere and there
would be no condensation. The only remaining
alternative is that each state n is occupied by a
single proton with spin up (or spin down) and a
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single neutron with spin down (or spin up). In
other words, the spins of the protons are all ori-
ented in one direction and the spins of the neu-
trons all in the other. It is to be compared with
the normal configuration where each state e is
occupied simultaneously by two protons and two
neutrons with the two spin directions. As this
configuration gives rise to a nonvanishing source
function, it will allow one to gain energy from
the tensor force. The price one has to pay for it
is that one is forced, according to the Pauli prin-
ciple, to place a number of nucleons, which nor-
mally would occupy lower orbitals, to higher
ones, whereby increasing their kinetic energy.
The energy balance depends very much on the
way these extra nucleons are distributed on the
higher orbitals. From the result of the infinite
system, one may expect that a configuration

which gives rise to a strongly oblate shape of the
nucleus will allow one to get the most out of the
tensor force.

To simplify the problem, let us suppose that
nucleons are placed in a harmonic-oscillator po-
tential with axial symmetry characterized by the
frequencies +, and &„=w„or equivalently by the
oscillator lengths b, and b„=b, with b =k/Mw, .
A single-particle state n is then defined by the
quantum numbers n, and (n, rn) corresponding to
the wave function

X„(r)=R„(z)R„(p)e' ~/(2m)' ',
which is the product of harmonic-oscillator wave
functions in one and two dimensions, where z, p,
and y are the usual cylindrical coordinates. To
calculate the condensation energy, it is conveni-
ent to write the one-pion-exchange potential in
the form

V», (1,2) =-(fin,)'(~, ~ ~,)fd'k(2~) '(o, k)(o, k)e* " "p(k')/~„', (4)

with +,' =~,'+k' and where one has introduced a reduction factor p(k') =A'/(A'+k') in order to test the
sensitivity of the short-range part, with A = ~ corresponding to the usual form of the OPE potential. In
the mean-field approximation, the condensation energy is just the direct part of the expectation value
of Vopp in the SID configuration:

(Vop, ) = —(f/yn, )'Q 8 fd'k (2w) 'k, 'p(k')(u„'(ai e' '"in)(Pie ' '2iP)

b, b„'=bs ~ (10)
E, =(Vop, ) +2 g [(n+ l)~„+ (n, + z)(u, ], (8) For a given value of b„namely for a given den-

sity, the SID configuration will be more stable if
one can get a set of values b, and b„satisfying
Eq. (10) for which the energy E, is lower than E,.

As a test to see whether such a situation might
effectively occur, we have considered the carbon
nucleus N=Z =6 for which the ground state corre-
sponds to b,'= 1.65 fm. Of course, the question
is not to see whether, at the density correspond-
ing to b,', the SID phase is more stable than the
normal phase: We know that the answer is nega-
tive and that at best one could expect a small mix-
ture. On the other hand, it may be that at higher
densities (smaller b,), the situation is reversed:

n=(ng, n, m)

where the sum runs over all occupied orbitals
and the factor 2 coming from the summation over
the proton and neutron. This energy is to be com-
pared with the energy of the normal phase which
we shall take as a spherical nucleus in a harmon-
ic-oscillator potential with frequency +,. As the
tensor force does not contribute in this case, one
gets simply

E,=4 P (X+-.')~,.
n=(N, t,m)

Of course, the frequencies w„w„and w„are
not independent: We shall impose the condition

The one-body matrix can be calculated immediately, with use of Eq. (3):

(o.ie'~'icl)=G, "(k,)G&"(ki) = f dz 2R„'(z) cosk, z f, pdpR„'(p)J, (kip), (6)

where J, is the usual regular Bessel function of zeroth order. The final result for the condensation en-
ergy is

(Vop~) = —(f/mm, )'Q 8f dz k, 'G, (k,)G,6(k, )f kidkiGp (ki)G p~(k~) p(k')/(u„'.

The total energy of the SID configuration relative
to the bottom of the potential well is the sum of
Vop~ and the kinetic energy of the nucleons (with
8=1):
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One then has a phase transition and the SID solu-
tion becomes more favorable.

The importance of the choice of the SID config-
uration will be illustrated by the following two ex-
amples: Configuration I, (n„n, m) = (0, 0, 0),
(0, 1, 1), (0, 1, —1), (1,0, 0), (1, 1, 1), and (1, 1,
—1); configuration II, (n„n, m) =(0, 0, 0), (0, 1, 1),
(0, 1, —1), (0, 2, 2), (0, 2, 0), and (0, 2, —2). No-
tice that for b, = b„, the configuration I corre-
sponds to a spherical nucleus and configuration
D to an oblate one. This oblate shape can further-
more be accentuated by decreasing b„ thus in-
creasing b„according to Eq. (10).

Figure 1 shows first of all that for each value
of b„ there exists a set of values b, and b„satis-
fying Eq. (10) for which E, is minimum: This val-
ue E, '" is the lowest energy of the SID phase at
a given density. The curves have been obtained
for configuration II with the cutoff energy A = 900
MeV. For configuration I, the corresponding
curves are very similar, except that they lie
much higher. This fact is illustrated in Fig. 2
where we show the energy differences E, -E,

in terms of b, for the three values A = 500, 900,
and ~ MeV. The ratio of the densities p/p, = (b,'/
b,)' is also given. We see that, even at very high
densities, configuration I is still less favorable
(E, &E,) than the normal configuration. On the
contrary, for configuration II, there always ex-
ists a critical density p, above which the SID so-
lution is more stable. For A =~, 900, and 500
MeV, one gets, respectively, p, = 1.95p„2.53p„
and 4.36po (b,'= 1.32, 1.21, and 1.01 fm). It
should be emphasized that these values are just
rough estimates of the critical density. As in
previous calculations, the largest uncertainty
comes from the treatment of the short-range
part of the interaction which is illustrated here
by the variation of A. Furthermore, the total en-
ergy of the system should be better calculated by
directly using, instead of Eqs. (8) and (9), a
Hamiltonian with a properly chosen two-body in-
teraction (in addition to the OPE potential). The
effect of the d (1232) and of the exchange part of
the interaction, "which are both important and
contribute in opposite directions, should also be
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FIG. &. Variation of the SID phase energies (config-
uration IQ vs the shape parameter b, for different val-
ues of the density parameter b~. The cutoff energy is
A=900 MeV.

FIG. 2. Relative energies E~ '" —E, vs density var-
iations for configurations I and II and for three values
of A.
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taken into account.
Aside from the uncertainty in the value of the

critical density p„ the present calculation shows
clearly that this value exists above which the SID
phase is more favorable than the normal phase.
In this phase the oblate configuration in which
one puts as much as possible the nucleons in
states of the (x,y) plane, is favored. The oblate
shape is even strongly accentuated by the small
values of b, & b„obtained. It should be empha-
sized, however, that the proposed SID phase does
not represent a stable, but a transient state. As
can be seen from Fig. 1, even though its energy
is the lowest at densities above the critical den-
sity, it is always higher than that of the normal
phase at the normal nuclear density. At these
very high densities, the energy of the SID phase
may even be higher if the short-range repulsion
between the nucleons is included.

It is obvious that it would be most interesting
if one could observe such a phase, if it exists.
For this purpose, the proposed' idea of observ-
ing it in a heavy-ion collision is of interest. Dur-
ing the short interval where two ions crash
against each other, the density may be very high,
which would allow the combined system to reach
the condensed phase. For the case of the nucle-
us N =Z = 6, the energy necessary for reaching
such a phase may be estimated. Taking A = 500
MeV, the energy of the SID phase at the critical
density is 1.056 GeV and that of the normal
ground state of the carbon nucleus is 0.396 GeV.
In its center of mass, the energy required is
therefore E' = 0.66 GeV. In assuming that this
system is obtained by the head-on collision of
two 'Li nuclei, the incident energy of the projec-

tile in the laboratory system must be, neglecting
binding energies and with use of nonrelativistic
kinematics, at least E, =2E' = 1.32 GeV. Obvious-
ly, this value should not be taken as such for an
experiment. In the present situation, what one
should do is to really carry out experiments for
all available energies E, and to look for possible.
anomalies. The SID phase, if it exists, would
open up a new channel and would manifest itself
as an increase in the total cross section.
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K-vacancy fractions have been measured for Q ions moving in Fe and for F ions moving
in Fe, Co, and Ni at velocities 2.1~v/v0~10. 5. Discontinuities that explain those found
for the transient magnetic field are observed. The present findings indicate that (i) the
transient field cannot be approximated by a linear velocity dependence for Z& —8 in Fe
and for Z~ -9 in Co and Ni, and (ii) the discontinuity in the transient field is only present
at velocities below 4eo.

Much effort has recently been put into the in-
vestigation of the origin of the transient magnetic
field (TMF) which acts on nuclei slowing down

in ferromagnetic materials. ' ' It is presently
believed that the TMF is caused by polarized
electrons in bound ns states of the moving ion
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