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Diagonalization of the Chiral-Invariant Gross-Neveu Hamiltonian
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The Hamiltonian of the chiral-invariant Gross-Neveu model is diagonalized, without

approximation, using a modified Bethe Ansatz.

The chiral-invariant Gross-Neveu model, with formal Lagrangian

&=~V.A.+g[(~.C.)' (C.y-'~. )'], a= l, 2, .",N.

has a number of interesting features. It is asymptotically free and exhibits dynamical mass genera-
tion' ' without the presence of a Goldstone boson. ' The chiral symmetry remains unbroken, ' and the
massive physical particles have zero chirality. This peculiarly two-dimensional phenomenon involves
the existerice of a massless excitation which decouples from the rest of the spectrum.

In this Letter we seek to diagonalize the Hamiltonian H, the integral of

K=-i(g.+*8„g.+- g. *0„(.)+4~„*go *(&,(. ,

where we have chosen y' to be diagonal and have Wick ordered the products of fields. The model is
thought to possess an irifinite number of conserved charges, so that in any scattering process the sets
of incoming arid outgoing momenta coincide. It is thus natural to use a Bethe Ansa~z for possible eigen-
states of H, as was done recently in the case of the massive Thirring model. '

We assume canonical anticommutation relations for the cut-off, unrenormalized fields, and con-
struct a Fock representation with cyclic state 10) (the drained Dirac sea) defined by

y., 10) =O=q. ~0).

The physical vacuum will be obtained by "filling the sea." Consider states of the form
N

~ E, h&
=fd"x E E(x„.. .,x„p„..., p,)](a„.. ., a.) II g., s,.*(xo)[0&. (4

Here p; =+ I is the chirality and $(a) is the color wave function. In order for
~ E, f) to be an eigenstate

of 1I, E(x; P) must be an eigenfunction of the N-particle Hamiltonian

N

It = - t P P;8, - 4g g &(x; -x,)P"[-.'(I —P,P, )], .

where P" is an operator which exchanges P; and P, . Although h does not involve color, the presence
of $ (a) allows nontrivial permutation symmetry [m». . .,m, ], m; ~N„ for E(x; P).

To diagonalize h, we employ a method devised by Yang. %e first divide configuration space into re-
gions labeled by permutations Q &8„. In the interior of region Q, defined by 0 (xo, ~ xo, ( ~ ~ ~ &

xnan
~L, the particles are free and we write I' as a superposition of plane waves labeled bye momenta k;
and chiralities n;:

E(x;P)= Z ] (q)exp(iZk„x„)g~„,,„Pcr- SN j=l l= 1

The corresponding energy and momentum are
N

E = Qe~k;,
N

P=pk;.
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$ J,.= F;,' 4, i =Pa =P'b, j =Pb =P'a

with

(8)

Note that/', the numbers of e; =+1, are con-
served quantum numbers since 8 is chiral invari-
ant.

In order for I' to have proper discontinuities at
the boundary between neighboring regions Q and
Q' (Qa=Q'b, Qb =Q'a, b =a+1; Qm=Q'm, m
& a, b) it is sufficient that the coefficients 4,(Q),
regarded as (V!)-component vectors, satisfy

(3 gy ~ ~ 'p3'M)

= + &If(Asg, sx)" 'f(As~~Yu)~ (12)

We shall find that c is the effective coupling con-
stant.

We now restrict ourselves to N, =2. To solve
(10), we consider 6'" acting onÃ spine forming
a cyclic chain. If 1&y, & ~ &y„&N are the co-
ordinates of M down spins, we find a solution of
the modified Bethe form'

6 ' + (ng -ng)8~ nq ~n~
1-g ~~ ig

y ab +

with

g(n~ -A) + c
g A-+1-A

Here 6'" interchanges $ ~(Q) and $~(Q') and 8 is
the identity operator.

Imposing periodic boundary conditions leads to
an eigenvalue equation for @ = sgn(Q)$„. ,„~&(Q):

X;,1,4' "XNJ-'X14 '""X; l„e

,",i(n, -A,) c- {14)

provided that the M numbers A z are distinct and
satisfy

where

=exp(ik&L)C,

i(n; —n, )g+ cd'"
i(n, —n,)+c

(10) N+8(2Ay —2) +N 8(2Ay+ 2)

= —2nj(Ay)+ +8(Ay —Ag),

jexp(in;y), n;& n,
82' =

exp(iny7T) ~ n) = ng~

c =4g/(1-g') =2tanp,

8(x) = —2 tan '(x/c), —n & 8& v

and the J(A~) are half-integers (integers) when
M is even (odd), From (14), the allowed momen-
ta of the bare particles are

k, =2' 'n;+n;N! ~&~L"'y+n&(V~ &~-1)L 'v+L ' +[8(2A& —2n&)-n&v],
/=1

so that the total energy is

E L '[2ngn, n;+2V'N p+N'(V'-1)m+Ã (V —l)w+ N'Q&8(2A 2) -N QA8-(2A+ 2) -NMn].

To render the sums over j finite, we cut off 2' 'In, I at%. We now proceed to find the ground state
and various excited states of the Hamiltonian.

Va&u~ +tate. —The state of lowest energy is a color singlet of vanishing chirality, with N' and M
all equal to ~. The A z are all real, and the J(A z) in (15) are consecutive half-integers for Ã' as-
sumed to be even. The n; quantum levels are filled in such a way as to minimize the energy. From
(15) with N'= ~, it follows that in the continuum limit the density co of A z on the real line must satis-
fy

2m@0(A) = - 2cfdA'go(A')[c'+ (A -A')2] '+ 2cN[c'+ 4(A- 1)'] '+ 2CN[c~+ 4(A + l)~] '.

Introducing Fourier transforms in (18), one obtains

oo(p) =N cosp(2coshc'p) '

One can now calculate the vacuum energy from (1V),

Z, =- (re+~/L)N+ .'N'L '(v+2'), -

(18)

(2o)
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where

q =q +N-'J dA a,(A)[e(2A —2) —e(2A+2)] --.'~.

Minimizing the energy then yields, for the number of bare particles (dropping terms of order L ),

N =2KL(~+ 2P)-'. (21)

Massless excitations A.m—assless, colorless excitation with vanishing chirality may be obtained by
simply raising one bare particle in the Dirac sea to an empty level above it. This excitation is clearly
the analog of the scalar boson in the massless Thirring model.

Massive excitation: color spinor. vVe—now consider a state with unit chirality and color spin 2, in-
creasing N' by one while leaving N and M at their vacuum values. There are now I+ 1 allowed val-
ues for J(A z), but only M A z. Thus there is inevitably a "hole" in the sequence of J(A ~) values, say
st Ao. From (15), the Fourier transform of the density o(A) for this state is found to be

o(p) =o,(p) +exp(- ip)(2 coshc'p) ' —exp(- ipA')[1+ exp(- ci pi)l '. (22)

The energy and momentum, relative to the vacuum, are readily computed:

+ NI. 'tan '[cosh(mA'/c)/sinh(v/c)],

P'= p-PF =-q+NL 'tan '[sinh(mA'/c)/cosh(m/c)],
(23)

where q =2' 'n, +K, with n, the additional level, and PF = —2/K(m+ 2P) ' is the effective Fermi mo-
mentum.

We see that the energy and momentum have two contributions: a massless chiral excitation analo-
gous to that in the Thirring model, "and a massive particle with color spin & and chirality zero. Its
mass ls

m=NL 'tan '11/[sinh(m/c)]f-4K' 'exp(-vr/c) forK- ~, c-o. (24)

With both m and the rapidity X =7TAo/c taken to be
cutoff independent, we obtain the relativistic
spectrum

E' =
i q) +m cosh',

~' =~+m simba.
(25)

Formula (24) exhibits both the dimensional trans-
mutation and asymptotic freedom characteristic
of the model. As K- , the dimensionless coup-
ling constant vanishes logarithmically, and the
resulting theory is parametrized only by m.

Massive excitations: color triplet and singlet.—A color triplet state with N'=2N =M+1, as
well as a color singlet state withe* =2N =M, are
obtained by putting two holes (at A' and A2) in the
sequence of J(A7) values. The singlet case re-
quires in addition a conjugate pair (two-string)"
of complex A z with Imh

~
=+ ic'. The energy and

momentum may be calculated as before (for
oo)

E' =m coshx, + m cosh'„
~' =m simba, +m sioux, .

(26)

We have succeeded in diagonalizing the Hamil-
tonian of the cut-off chiral-invariant Gross-Neveu
model, and have obtained the spectrum in the lim-

it of infinite cutoff. The vacuum and low-lying
excited states have been described above; other
energy eigenstates, with higher chirality, color
spin, or numbers of massive and massless par-
ticles may be obtained similarly. We have con-
centrated on the case N, =2, but our method can
be extended to arbitrary N, using Sutherland's
generalization" of the Bethe- Yang Ansatz. This
mill be presented elsewhere.

Note added: L. D. Fadeev has informed us that
A. Belavin has treated a related chiral-invariant
model obtaining similar results.

Part of this research was done while one of us
(J.H.L.) was visiting the Los Alamos Scientific
Laboratory of the University of California. One
of us (N.A.) would like to thank E. Witten and
L. Yaffe for many stimulating and useful conver-
sations and M. Aizenman for a discussion on
group theory.
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The hypothetical existence of new color interactions, which participate in the spon-
taneous breaking of the weak-interaction group, will in general lead to relatively light
composite pseudo Goldstone bosons. Their production and decay characteristics are
analyzed to be close to, yet actually distinguishable from, those of the elementary
Higgs bosons of the %einberg-Salam model.

The usual implementation of the Goldstone-
Higgs mechanism of spontaneous symmetry
breaking, via elementary spin-0 fields, is one of
the less attractive features of conventional quan-
tum fla.vordynamics (QFD). And the situation is
acute in attempts to unify QFD and quantum
chromodynamics (QCD) into a single gauge theory.
In such grand unified theories, one is obliged to
introduce a multitude of Higgs fields with judici-
ously contrived couplings; the essential simplic-
ity of the gauge-theoretic approach is, thereby,
irretrievably lost. It has been suggested, '
therefore, that one discard elementary Higgs
fields altogether, and seek a dynamical mechan-
ism for symmetry breakdown.

In the simplest dynamical mechanism, the re-
quisite Goldstone bosons, which furnish the longi-
tudinal degrees of freedom for massive gauge
fields, are bound states of a new species of quark,
whose superstrong gauge interactions (generated
by gauging a color' degree of freedom and de-
scribed by a theory hereinafter called QC'D)
spontaneously break chiral symmetry.

The color' quarks are likely to come in several
flavors, in which case there will be several light
pseudo Goldstone bosons as well. In this Letter

we observe that these particles may be as light
as 10 GeV, that they will be relatively pointlike
(of size 1Teg '), and will have production and de-
cay modes that are determined by partial con-
servation of axial-vector-current arguments and
hence are fairly model independent. Their signa-
tures are, crudely speaking, similar to those of
elementary Higgs particles; consequently, we
stress the differences. If spin-0 weakly interact-
ing particles are discovered with masses of tens
of GeV, the question of composite versus elemen-
tary need not wait until energies of 1 TeV probe
the possible bound-state structure.

The color' degree of freedom, first introduced
by Weinberg, ' may be dubbed "hypercolor. '" The
terminology is convenient, with words such as
hyperquark, hyperpion, and hyper-a having an
obvious meaning. We take the weak and electro-
magnetic interactions of the hyperquarks to be
isomorphic to those of ordinary quarks so that a
flavor doublet such as (u', d') transforms as (u, d)
under the electroweak group.

The existence of hyperquarks is, of course,
logically independent of the existence of elemen-
tary Higgs particles; we do not rule out the possi-
bility that there may exist both hyperpions and
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