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K, =
~
E(X)~'[& ' —0'(X)] '. We must not be too close to the resonance because there the perturbation ex-

pansion breaks down. If in addition we assume ~ «Q(X) we obtain the Alfven confinement. " (ii) In the
electrostatic limit E(X)= —ik(X)q (X),

(X)J',' lsd, '/Bp
—&&(x) —&„(x)zp ~ —t~(x) —a„(xp'I '

In forthcoming communications we plan to apply this formalism to study plasma kinetic theory and

nonlinear wave interaction.
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It is shown that even within the quasilinear
zero-order contribution to the growth rate at

In this Letter, we reconsider the quasilinear
theory' and its validity for describing the reso-
nant interaction of waves with particles. For
simplicity, we limit ourselves to the case of 1D
Langmuir turbulence in which ions are treated
as an immobile neutralizing background. Quasi-
linear theory lies upon the assumption that the
correlation time T, of the electric field seen by
a resonant particle is small as compared with
the evolution time of averaged quantities. It is
generally admitted that the previous assumption
allows one to neglect the mode-mode coupling
terms, leading them to the use of the linear dis-
persion equation for the evolution of the electric

framework, mode-coupling terms give a
least for one-dimensional Langmuir waves.

field. Renormalized theories' take into account
some classes of nonlinear terms but in the limit
z,- 0, they do not lead to significant corrections.
In the first part of this Letter, we compute the
field spectrum from the two-point, double-time
correlation function of the particles. The growth
rate is found to be modified with respect to the
usual quasilinear result at the lowest order. The
modification is a consequence of wave emission
by strongly correlated resonant particles. In or-
der to understand why this effect is not obtained
in the classical quasilinear theory, we show in
the second part of the Letter that mode-mode
coupling terms are actually not negligible when
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the resonant particles are taken into account in
the computation of the mode-coupling coefficients.

We have obtained an equation which gives the
correlation function of the particles in terms of
the field correlation function by using diagram-
matic methods which will be published elsewhere.
Here we present a heuristic derivation which
makes use of conventional techniques of plasma
turbulence theory.

The field correlation function can be written

(E (x, t)E (x', t'))

= fdk NI, (t, t') exp{i [k(x -x') —~„(t -t')] j'

and we assume that NI, is a slowly varying func-
tion of t and t'. We define the particle correla-
tion function g by

g(x -x', v, v', t ')

where the angular brackets denote an ensemble
average. By integrating the Vlasov equation for
the fluctuating part of the distribution along the
exact trajectories, we obtain

g(x -x', v, v', t, t') =(q/m)'f, du f fdkNI(u, u') exp[ i~a(u

x(exp[ik[x(u) -x(u')]]) (af(u)/av) (af(u')/av') (I)

wherex(u) and x(u') are the solutions of the motion equations at time u andu' such thatx(u =t) =x, v(u
=t) =v andx(u'=t') =x', v(u'=t') =v'. For obtaining Eq (1), we have replaced the exact propagator for
the two particles by the averaged one, as it is usually done. This result is a double-time generaliza-
tion of the expression that Dupree obtained for the single-time, two-point correlation function.

In order to evaluate the first angularly bracketted term in the right-hand side of Eq. (1), we notice
that a particle with a given velocity v is reasonantly coupled with modes having phase velocities u&, /k
such that i &u„/k -vi ~ (D/k)'", where D is the usual quasilinear diffusion coefficient. Consequently,
we consider two cases. Firstly, if iv -v'i»(D/k)'i', the orbits are uncorrelated and in Eq. (1) we are
allowed to set

(exp[ik[x(u) -x(u')] j) =(exp[ikx(u)]) (exp[-ikx(u')]) .
In this case, provided that v, is small, we can write

g(k, v, v', t, t') =(q/m)'exp[-ice, (t —t')]R„(v,t)R „(v', t')N, (af/av) (af/av'),

where g(k) is the Fourier transform of g with respect to x -x'. The operator R, is defined by

t
R,(v, t)y(v, t) = f du exp[i(kv —&u,)u —(k'D)u'/3] y(v, t -u).

This result could also have been obtained by use of the resonance-broadening propagator to compute
the perturbation of the distribution function f(x,v, t) induced by the electric field, and by making an en-
semble average of the product f(x,v, t)f(x', v', t').

We can already use these simple results to determine the mode frequencies. From Poisson equa-
tion, we find that

k'N„(t, t') exp[-i&a, (t —t')] = (q'/e, ') fg(k, v, v', t, t')dv dv'. (4)

We now take into account the weak turbulence ordering by assuming that the velocity gradient of the
distribution function is small for resonant particles. More precisely, we set f =f~+fI„where f~ is the
distribution of cold plasma and f„ is the distribution function of hot particles which can interact reso-
nantly with the waves. The linear growth rate y„depends on f„and we assume that the inequality

g =yq /(up~(( 1

is satisfied.
We insert the result of Eq. (3) into Eq. (4) and look for solutions such that

N„(t, t') =N„exp[-za&u, (t —t') +y, (t +t')].
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If ~„ is taken to be the solution of the linear dispersion equation

v(k, v„)=1- f V
( )dv,

where P denotes the principal values, Eq. (4) shows that 5&@« is of order g'. However, we find that y„
cannot be obtained from Eq. (4), because it cancels out at the lowest order in g. In order to compute
y~, we use once more the Poisson equation to write

ikE«(t) ——
f« f,(t)dv ikE «(t') + f—g «(t')dv' =—,f„g(k,v, v', t, t')dv dv',

where in the right-hand side the integration is restricted to hot particles. We assume that the cold
plasma behaves linearly so that the left-hand side contains the product of the bvo dielectric responses
of the cold plasma at t and t'. As we shall see, g(k) will appear as a sum of terms oscillating like
exp[- ip~«(t -t )]. Only the components p =x 1 will be resonant and thus will lead to a significant con-
tribution to the time variation of the wave spectrum V~. We divide the integration range of the hot par-
ticles into the uncorrelated domain (u), where

~
v -v'~ » (D/k)'", and the correlated domain (c), where

~
v -v'~ 6 (D/k)'~'. Using Eq. (3) in the domain u and the previous definition of a&» we obtain, up to or-

der 'g

BE B

8+~ Bt Bt' =k y, V«exp2y„t =, f~,&g, (k, v, v', t, t)dv dv',2 f
8(dp Eo

(7)

where g, (k, v,v', t, t') denotes the p =1 component of g(k, v, v', t, t'). We now have to compute g(k, v, v',
t, t) for correlated particles, which corresponds to the second case, ~

v -v'~ ~ (D/k)'". As pointed out
by Dupree, ' the result given by Eq. (3) is no longer valid since, when

~
v -v'~ ~ (D/k)'", the two parti-

cles interact resonantly with the same Fourier component of the electric field. We need only the sin-
gle-time correlation function which is provided by the Fokker-Planck equation for (f(x,v, t}f(x',v', t)) .
We obtain

[8, +v 8„—2D(v, , t)(1 —cosk,x )(8„)'2]g(x,v, v„t,t) =2D(v, ,t)(cosk, x )(8(f)/», )', (8)

where v =v -v', x =x-x', v+ =(v+v')/2, and k+ is the positive root of the equationk+v+ =+«, . In Eq.
(8), we have neglected the v, dependence of the diffusion coefficient D (v „t) as compared with the v
dependence of g because the solution will exhibit a fast variation in v close to v =0. Equation (8) is
the Dupree equation for the correlation function, namely Eq. (49) of Ref. 3, in which we have made a
weak-turbulence assumption by assigning a single mode frequency to a given k.

When the linear growth rate y„ is larger than (k'D)' ', we can neglect the diffusion term in the left-
hand side of Eq. (8), and Eq. (8) provides the linear result for g. Inserting then this solution into Eq.
(7), we recover the usual linear growth rate, namely y«' = (y«")', where y, is the Landau growth rate.

On the other hand, for y««(k'D)'", we can neglect the time derivative of g in Eq. (8). It is then
possible to solve exactly Eq. (8) and write the solution as follows:

g =[ Z g&(v )~(k-pk+)]2D(v+, t)(&&f)/», )',

with

g«(v-) =(2k'D) ' '( Q [J„«g)+J„+«g)][&„(n)/n] f, cosy' exp(-p'/3n)dp
n=1

+i Q [J„«(n) —J„+«(n)][J'„(n)/n] fo sinew exp(- p'/3n)dpj,
n=1

where w =(2D/k) '"v and J„(x) is the Bessel function of order n. Like in the resonance-broadening
theory, the correlation function is peaked around v =0 with a characteristic width Av, = (D/k)'". As
shown in Eq. (12) of Ref. 3, for t e t', the terms g&(v ) oscillate like exp[- ipkv+(t —t')] = exp[ipse«(t —t')].
Thus, as explained before, we are interested only in g, and g, which can be approximated by

g, g, =~2A5(k+v ), (10)

1673



VOLUME 43& NUMBER 22 PHYSICAL REVIEW LKTTKRS 26 NOVEMBER 1979

where A =4+„",[Z„'(n)/n] = 1.668 instead of A = 1

in the linear or resonance-broadening theory.
This modification results from the x dependence
of the diffusion term in the left-hand side of Eq.
(8). It generates harmonics of k, which modify
the fundamental terms by recoupling. It strongly
recalls O'Neil's arguments for keeping nonlinear
terms when computing the damping of monochro-
matic waves and reflects the importance of par-
tial particle trapping of resonant particles. '

Using Eq. (10) to compute the right-hand side
of Eq. (7), we obtain

y. ' =A(y, ')'. (11)

Thus, when y„«(k'D)'", the time evolution of

the field spectrum is no longer given by the lin-
ear theory. In this regime, the nonlinear motion
of resonant particles leads to a finite modifica-
tion of the growth rate because it takes place on
a time scale of the order of (k'D) '"«y» ' and
then cannot be ignored. A rigorous demonstra-
tion based upon diagrammatic methods limits the
validity of these conclusions to weakly dispersive
waves such that

(d'co»/dk')[k'D)'"/v(k)]'««(k'D)'/' (12)

where u (k) =&a»/k is the velocity which is reso-
nant with wave k.

These results contradict the usual quasilinear
theory. Energy conservation is satisfied if the
equation for (f) is modified. ' Similar conclusions
have been obtained by Bakai and Sigov. '

We indicate now why the usual methods for es-
tablishing quasilinear theory are questionable. In
all derivations of quasilinear theory, the contribu-
tion of resonant particles is deleted in the compu-
tation of the matrix elements of the mode-mode
coupling terms. ' Within this approximation, these
terms are shown to be negligible in the limit 7.,- 0. Let us show that as a result of resonant par-
ticles, the mode-mode coupling terms give actual-
ly a contribution of the same order as the linear
term. For instance, in the evolution of the wave
intensity NI„we compare the linear term 2y, N~

with the four-waves coupling term

C. =fdkidk2M»
~ »„»-»,-» N» N» N»-» -» ~

The matrix M is the sum of several matrices re-
lated to different elementary processes. We find
that one of them leads to secularities when the
resonant particles are taken into account. The
corresponding matrix I'" may be written as

-2
i y, i (q/. ,)'(q/m)'

»y ~ »2, »-»y-»2 [(~ y2 2q k2 ~8~/s~ ~2 I 0 ky, »2, »-»y-»21

with+~» +~» +~»», „—&u»; the quantity rp» & + is defined by

dv

[cu» +(u» +(u@ —(k, +k, +k,)v+io] " (» +~@—(k, +k,)a+in " ~» —k,v+io

(14)
In Eq. (14), a &0 provides a prescription of con-

tour for v integration. The resonant particles
contribute to the quantity q», , ~ by terms
of the form

I k I ( s (f)/») /»)

[-(k —k, )o(k) +in] [—(2k —k, —k,)o(k) + in]' '

We notice that the product yy* yields, in the ex-
pression of M'", multiple poles in k —k, and 2k

k] k2 which are on both sides of the real axis.
Consequently the k, and k, integrals will be diver-
gent as Q. -0, indicating a secular behavior of
this mode-mode coupling term. Moreover, it
can be checked that this term does not belong to
the mode-mode coupling terms which are sum-
med up when using renormalized propagator.
The secular behavior is removed by keeping the
growth rates in the resonant denominators and
with use of a renormalized propagator which in-
cludes resonance broadening. In order to esti-
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mate the magnitude of this term, it is sufficient
to replace o. by max[y„(k'D)' ']. We then ob-
tain, for the order of magnitude of C4,

(k2D)1/3 6

y, N» max[y„, (k'D)'"]

Thus, for y»»(k'D)' 3, we find that this term
can be neglected and we recover the quasilinear
result. On the other hand, for y»«(k'D)'A we
find that this mode-mode coupling process con-
tributes at the same order as the linear term.
It can be shown that in this case all 2n-wave
resonant-coupling processes lead to contribution
of the same order and that summing up these con-
tributions leads to result (ll). Once more,
these conclusions hold only when inequalities (12)
are fulfilled. Indeed, the result (15) is obtained
when (Pm) is negligible as compared with y» in
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the domain of integration for k, and k, given by

) k, —k
i

( (k'D)' '/v(k))
) k, —k

i
( (k'D) ' '/v(k).

These results show that, in the frame of weak-
turbulence theory, the nonlinear behavior of
strongly correlated resonant particles leads to a
modification of the growth rate at least in a 1D
plasma whenever inequalities (12) are fulfilled.
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