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In conclusion, by combining our recursive cal-
culation of partition functions of finite disordered
systems with simulations, we have separated
equilibrium from nonequilibrium eff ects. From
the size dependence we conclude that there is no
nonzero order parameter for d = 2 Ising +J spin-
glasses, although there are strong spin correla-
tions over large distances at low temperatures.
Applications of our method to c& and Ising sys-
tems with random fields are in progress. " Clear-
ly, this method should yield useful results for a
large class of models for disordered materials.
In addition, investigating a possible power-law
decay of correlations theoretically from the point
of view of frustration ~d gauge «nvariance"'4
would be very interesting.
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We have calculated the ground-state properties of the & = g XY and Heisenberg models
on finite triangular and square lattices with competing interactions which would lead to
frustrated classical spin models. The evidence favors the hypothesis that quantum spin
models on infinite two-dimensional lattices experience no frustration.

The concept of the frustration effect in spin
systems with competing interactions has been
elaborated especially for the s = —,

' Ising model"
and for the planar model. ' The assignment of the
signs of the interactions to bonds of the lattice
is such that the ground state of these classical
systems is highly degenerate. A motivation for
such studies is the elucidation of the nature of
spin-glasses. ' The first frustrated system stud-
ied was the Ising antiferromagnet on the triangu-
lar lattice. '

Frustrated spin models are usually character-
ized by the Hamiltonian

X= - -,' Q J,„5 S,"S,".
&ij& n=l

The first sum is over nearest-neighbor pairs of
sites on a lattice. @=1, 2, and 3 correspond to
the Ising, XY, and Heisenberg models, respec-
tively. In the classical (S= ~) limit, S;" is a
Cartesian component of a unit vector; in the ex-
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treme quantum (S= —,') limit, S,."=a,.", a Pauli
matrix. All previous studies of frustration have
considered explicitly only the classical models
or the quasiclassical S= —,

' Ising model. Here we
investigate the frustration concept for fully quan-
tum mechanical models, making explicit calcula-
tions for the S= —,'XY and Heisenberg models. We
study both models with all interactions antiferro-
magnetic on the triangular lattice and with both
one quarter and three quarters of the interactions
antiferromagnetic on the square lattice in two
different patterns.

For the even-N, purely ferromagnetic X Y
model the ground state is nondegenerate, ' belongs
to the identity representation of the space group
of the lattice and has

1U

iaaf, = P S,'=0.

(For odd N the ground state is doubly degenerate. )
The Heisenberg antiferromagnet on bipartite
lattices also has a nondegenerate ground state'
and has M= 0. For either of the antiferromag-
nets on the triangular lattice or for mixed ferro-
magnetic and antiferromagnetic interaction mod-
els no exact results for general N are known.

Below we calculate the properties of the S= —,
'

XF and Heisenberg models with competing inter-
actions on finite (N -12) triangular and square
lattices (or cells) with periodic boundary condi-
tions. We extrapolate from the results for finite
lattices to form a hypothesis on the frustration
effect for quantum spin models on infinite two-
dimensional lattices. The infinite square lattice
can be tiled with squares of N = l '+ m' sites,
where l, m =0, 1,2, . . . . The triangular lattice
can be tiled with 60' equilateral parallelograms
of N =/'+m'+km sites. Betts and Oitmaa' have
estimated the ground-state properties of the S= —,

'

XY and Heisenberg ferromagnets on infinite two-
dimensional lattices by calculating exactly the
properties of interest on finite N lattices with
periodic boundary conditions and extrapolating
against 1/N. Exploitation of symmetries per-
mitted completion of calculations for all N &20.
All intensive properties of interest such as the
ground-state energy per spin or the root-mean-
square magnetization per spin vary quite linearly
with 1/N for N &4 thus allowing precise estimates
for the infinite lattice.

Local or ptaquette frustration was discussed by
Toulouse' and others, but two-dimensional spin
systems can also suffer from a global type of
frustration induced by periodic boundary condi-

TABLE I. Ground-state properties of 8 = 2 antifer-
romagnets on triangular lattices of N spins.

(a) Ising model
Zo/3NJ

S0/Nkg

(b) XF model
&0/3'

I'c) Heisenberg model
Eo/3'

1/60.2143 1/6 1/6
70 42 120

0.6069 0.4153 0.3990 0.3231

0.1429 0.2827 0.2861 0.30
28 4 1

0.2143 0.3829 0.4069 0.46
28 4 1

tions which we call ~0«i~~ frustration. For
example, the Ising antiferromagnet on the square
lattice does not suffer plaquette frustration. How-
ever, for odd N, if periodic boundary conditions
are applied, the model is frustrated and the
ground state becomes highly degenerate. For a
3 X3 square with periodic boundary conditions
the ground-state degeneracy of the S= —,

' model,

gg ——102.
The Ising antiferromagnet on the triangular

lattice may suffer both types of frustration. On
an infinite lattice this model suffers only plaquette
frustrations, and in the (highly degenerate)
ground state each frustrated bond is shared be-
tween two plaquettes. On a finite triangular lat-
tice with free boundary conditions the Ising anti-
ferromagnet has only the Kramers degeneracy in
the ground state because frustrated bonds do not
occur on the boundary. On a finite lattice with
periodic boundary conditions the Ising antiferro-
magnet will suffer toroidal frustration for cer-
tain cell sizes. If toroidal frustration is present,
then the dimensionless ground-state energy per
site, E,/N~Z~ & ——,'.

Table I reveals that the seven-spin cell suffers
toroidal frustration while the nine- and twelve-
spin cells do not. Toroidal frustration adds near-
ly 50 j~ to the ground-state entropy of the seven-
spin cell expected if plaquette frustration alone
were present. A two-point extrapolation against
1/N of the ground-state entropy per site with use
of the nine- and twelve-spin results yields S,/
Nk 8 =0.35 for the infinite lattice, about 10%
above the exact results, ' indicating the level of
confidence for similar extrapolations.

For the S= —,'XY and Heisenberg uniform anti-
ferromagnets ( J,, = J'&0) we present the ground-
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state energy and degeneracy of triangular lattices
of seven, nine, and twelve sites with periodic
boundary conditions. The seven-site lattice is
highly frustrating to both models. The ground-
state energy per bond has almost the same value
for the nine- and the twelve-site lattices and per-
mits a meaningful extrapolation to the infinite lat-
tice. For both models the ground state on the
twelve-site lattice is nondegenerate; plaquette
frustration is absent I

One might wonder why g, = 4 and not 2 (Kramers
degeneracy). Additional insight into the proper-
ties of frustrated quantum mechanical spin mod-
els is afforded by the antiferromagnetic planar
model on the triangular lattice. For an equilat-
eral triangle of spins there are two types of anti-
ferromagnetic ground state, the vortex and anti-
vortex types, in each of which each spin makes
an angle of +2~/3 with its neighbors, and the
whole pattern may be rotated through an arbitrary
angle. Ground states of the triangular lattice con-
sist of states in which every triangular plaquette
is in a ground state. If we start to construct a
ground state of the entire lattice by orienting the
spins to achieve a ground state of an arbitrary
plaquette, the remainder of the construction is
seen to be unique. Thus the ground state has the
same degeneracy and symmetry, O(2), as a sin-
gle plaquette. The ground state is illustrated in

Fig. 1. The ground-state energy F., = —3g J'~/4.
There are only two inequivalent spin-spin corre-
lations; for nearest neighbors (S, S,) = 2(SO" S,")
= —2, and the second neighbor correlation (5,
~ S,)=1. The ground state is completely "full** of
vortices and antivortices. The planar antiferro-
magnet on a finite triangular lattice will clearly

TABLE II. Ground-state correlations on the twelve-
site and nine-site triangular lattice for 8 = 2 antifer-
ro magnets.

(~&"~, ")
XY model

(00' (r, ') (a'p ' (I~ )

Heisenberg
model

(00 &r;)

-0.2861
0.3878

-0.1570

-0.2828
0.4897

N= 12
-0.1951
0.0806

-0.0356
%=9
-0.1551
0.0207

-0.7673
0.8562

-0.3495

-0.7205
1.0000

-0.8136
0.7719

-0.2169

-0.7778
1.0000

suffer toroidal frustration unless the number, N,
of sites is a multiple of 3.

For the two quantum models the ground-state
correlations are listed in Table II for the nine-
and twelve-site triangular lattices. Qualitatively
the corresponding correlations in the two models
are similar. The nearest-neighbor x-x correla-
tions for the S=-,' XF model is only 10% greater
than that for the planar model. The fairly strong
negative nearest-neighbor z-z correlation in both
quantum models indicates why a lattice with an
odd number of spins imposes a degree of toroidal
frustration on quantum models (e.g. , g, = 4) as
opposed to the planar model.

Now we turn to square lattices which are of
maximum plaquette frustration for classical
models. In pattern I, all bonds in every second
horizontal row are distinguished by having the
sign of the interaction opposite to that of the re-
maining three quarters of the bonds. Pattern II
of distinguished bonds is illustrated in Fig. 2.
For both patterns it is possible to construct an

F

~ v

1

l

FIG. 1. Ground-state configuration of the planar anti-
ferromagnet on the triargular lattice. The dashed lines
outline a twelve spin cell.

FIG. 2. Square lattice with pattern-II maximal
plaquette frustration. Heavy and light bonds represent
interactions of opposite sign. Dashed lines outline a
ten-site cell.
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TABLE III. Ground-state energies per bond, EP-

2V~ J~, of the 8 = 2 XI' and ferromagnetic (HF) and

antiferromagnetic (HA) Heisenberg models on frus-
trated square lattices.

TABLE IV. Ratio of ground-state energy of spin
models with competing interactions to the energy of
the same model with purely ferromagnetic interactions
on infinite two-dimensional lattices.

Model
Pattern I

%=8
Pattern II

N= l0 Lattice Ising
Model

Planar HF HA

XY
HF
HA

0.4330
0.4373
0.5354

0.3953
0.4781
0.5500

0.3889
0.4772
0.5423

0.36
0.47
0.51

Triangular
Square

pattern II

0.3333 0.5000 0.56 0.86

0.5000 0.7071 0.67 0.94 l.02

N = 8 square with periodic boundary conditions;
for pattern II, it is also possible to construct an
N=10 square as illustrated in Fig. 2.

For the Heisenberg model the case (F) of three-
quarters of the bonds (in either pattern) ferro-
magnetic and one-quarter antiferromagnetic is
distinct from the case (A) of three-quarters of
the bonds antiferromagnetic. For the XY model
the two cases are equivalent. The ground-state
energies of all three models on the three finite
lattices mentioned above are listed in Table III.
In seven of the nine cases the ground state is non-
degenerate and M, = 0. In contrast, on the N = 8
pattern-I square lattice the Heisenberg ferromag-
net is quintuply degenerate with M, = 0, +I, a2 and
the antiferrqmagnet is triply degenerate with M,
= 0, +1. It is plausible that a larger pattern-I
lattice, say of N = 16, would have a nondegenerate
ground state, but it is beyond our present compu-
tational power to check this conjecture.

In summary, we have studied the ground state
of quantum XF and Heisenberg models on finite
two-dimensional lattices on which classical spin
models would be highly frustrated. The lattices
considered include the triangular lattice with all
bonds antiferromagnetic and the square lattice
with one-quarter or with three-quarters of the
bonds antiferromagnetic in two different patterns.
On some of the smaller finite lattices the ground
state of the quantum models is degenerate; i.e.,
the models are frustrated. We attribute such de-
generacy not to the plaquette frustration exper-
ienced by classical models but to toroidal frus-
tration associated with the size of the lattice.
The overall evidence is in favor of the hypothesis
that quantum spin models on infinite duo dimen--
sional lattices experience no frustration for any
configuration of antiferromagnetic bonds

Although quantum spin systems on lattices with
competing interactions appear not to be frustrated
in that the ground-state entropy is zero, the com-
petition might be expected to affect the ground-
state energy. Table IV lists the ratio of the
ground-state energy of each model with competing
interactions to the corresponding pure ferromag-
net for two classical and two quantum models. '
Competing interactions raise the ground-state en-
ergy of the S= ~ XY model by approximately the
same amount as in the planar model. However
the S =

& Heisenberg-model energy is almost unaf-
fected by the competition among the interactions
in all three cases.
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