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Evidence Against Spin-Glass Order in the Two-Dimensional Random-Bond Ising Model
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By recursive methods, numerica11y exact free energies are calculated for I &&L, )sing
lattices with bonds of randomly chosen sign, with 6 «L, ~18. Ground states of these
systems are identified, and the response to ordering fields is studied. By performing
Monte carlo simulations for precisely the same systems we are able to unambiguously
distinguish nonequilibrium phenomena from equilibrium properties. The I dependence
of our results suggests that there is no nonzero spin-glass order parameter for L,

It is currently debated whether the freeze-in of
spin-glasses is a nonequilibrium phenomenon or
a phase transition. ' ' Experimental evidence on
this question is still ambiguous. "Although the-
ories along the lines of Edwards and Anderson"
implied a phase transition, and results from
computer simulations were taken as evidence
for it,"'"later serious doubts arose: High-
temperature series for a nearest-neighbor Ising
system with random exchange +J suggested the
lower critical dimensionality d, = 4, implying that
there is no transition at nonzero temperature
for d & d, . While some theories' support this
result, real-space renormalization methods
yielded" 2 (d, (3. The anomalous slow decay
of the Edwards-Anderson order parameter

was also taken as evidence against a transition;
on the other hand, it was shown that such a decay
can result from finite-size effects or very slow
approach to thermal equilibrium4 and a qualita-
tively similar decay is found' for all 2 (d (5.

In this Letter we apply a new technique to ob-
tain the partition function of finite d = 2 Ising lat-
tices with exchange constants distributed accord-
ing to P(J,,) = c5(J;,-J ) + (1 —c) 5(J„+J),""pre-
senting results for c = &. Although we can treat
fairly small systems (linear dimension I, (18)
only, we note that Monte Carlo results for com-
parable systems have shown all characteristics
of spin-glasses. '" Computing the free energy
per spin, F = —k, T (lnZ(~. ))/L', we .obtain nu-
merically exact Z&~„&, while the average ( ~ ~ ~ )
over the disorder is done approximately (taking
the arithmetic average over about 30 realizations
{J„}yields sufficient accuracy). Our method
starts by writing Z as follows (v„denotes the
spin in the ith row and jth column; J= J/kB T i:

Z = 2 2 2 [H exp( Jli l(1+1) cli ol(j+1) ) exp( Jli2j c 1J' +22')1
(og, )

&& [+exp(J„.&;„)O„o',(,„))exp(J„.„o»o'„)jx ~ ~ ~ && [+exp(JI, ~(, ,)vL, o i,,»]. (1)

Here we use periodic boundaries 0,.@+y) 0,, in
horizontal direction only& while in ver tlcal di-
rection Eq. (1) implies free boundaries. We
compute Eq. (1) recursively. The first step is
to compute the "horizontal" factor II& exp(J.. .&,,»
&& v»o', ~,

.+») for all 2 states of the fv»)." Then
we compute the first "vertical" factor exp(J||»
&& o,p'») for the two possible choices of 0». Since
for our choice of boundary conditions we have
then taken into account all interactions of 0», we
now perform the trace over any keeping terms
for all states of $o'„) (j)2), o». Then the sec-
ond "vertical" factor exp(J»»o»v») is consid-
ered for the two states of 0», and the trace over
0» is performed, etc. After completion of the
second row the trace over all (o») is completed,

and we may compute now the "horizontal" factor
for the second row, start the third one, etc.
Thus we obtain Z(J., ) numerically for arbitrary
T, and computing lnZ(z, , ) for a set of neighbor-
ing T's we get internal energy per spin, U, and
specific heat per spin, C, with very good accu-
racy. The extension of the method to include
arbitrary fields is straightforward.

Somewhat more involved is the identification of
ground states. We start by storing the n (n= 10')
states of the first row having the lowest energies.
We combine these states with all states of the
second row, and keep again the n states which
now have the lowest energy, etc. After comple-
tion of this procedure we compare the total en-
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0' = k s TX /& = Z (o; o' )o ( ~; ~, ) /&' (2)

ergy U(k) for each of the remaining n states (k}
with L'U(T=0): If U«,(k)=L'U(T =0), then k is
a ground state. If no ground state is found, n

has to be increased and the procedure repeated.
An alternative is a standard Monte Carlo run for
our set (J,;}and slowly cooling the temperature
down to T =0, starting at T =2/ from a random
spin configuration and recording the internal en-
ergy. A comparison with U(T = 0) as obtained
above shows that for L, =12 the cooling time t,
must be 5 x10' to 10 Monte Carlo steps (MCS)/
spin, while for L = 16 t, must be 104 to 2 x104,
and for 1-=18 t, must be 3&10' to 6X10'. Cor-
recting for the effects of our two free boundaries,
we also find the ground-state energy of larger
systems reliably. For I- =32 a time t, =2&10'
was necessary to actually reach this extrapolated
ground-state energy. Since in previous simula-
tions""' much smaller t, 's were used, we con-
clude that true thermal equilibrium was not
reached there at low temperatures. Hence much
of the anomalous slow dynamics of this model,
as well as the irreversible behavior, are due to
the fact that the system is locked in low-lying
metastable states, and one has to cross fairly
large energy barriers by overturning clusters
of spins to reach still lower "valleys" in config-
uration space. This result confirms recent sug-
gestions of Dasgupta, May

These nonequilibrium effects, however, do not
invalidate all Monte Carlo data. Figure 1 shows
the specific heat of a 16X16 system obtained
from our exact method. Monte Carlo results with
a total observation time t,b, =2 X10 are included,
where the system was started either from a ground
state or a disordered state (t, =2x10' only).
These data agree with each other as well as with
the exact results and with the I- = 80 data of Kirk-
patrick. " Figure 2(a) shows Monte Carlo results
for q(t) for the same runs. These data again
agree with each other at least roughly, and imply
a freeze-in transition at ks T/J ~ 1.3+ 0.1, in agree-
ment with Ref. 12. Because of the finiteness of
our systems, there is of course no symmetry
breaking in an exact calculation, and q =—g, (a';)'/
N =0 for all N & ~. For studying the ordering it
is hence more convenient to use the order pa-
rameter g measuring the alignment to ground-
state spin configurations. "' For a finite sys-
tem this order parameter is related to the asso-
ciate susceptibility X& by"" [N -=L' in our case]
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FIG. 1. Specific heat per spin plotted vs temperature
for a particular realization of the +J spin-glass for I
=16. Monte Carlo results for precisely the saxne sys-
tem are included for runs starting either with a random
spin configuration (full circles) or with a ground-state
configuration (open circles). Piusses denote Monte
Carlo results for I =80 of Ref. 12.

We obtain (' from Monte Carlo simulations by
starting in the 3th ground state (~; 'i} and calcu-
lating the time average of (,'(f) =[+,. o,.i' v, (t)/N]'. .
This quantity has to be averaged over all ground
states, but it turns out that an average over only
several of them yields sufficient accuracy. In
the exact calculation we obtain g, '=ks T y &

"/N
from applying a field II& ', whose direction at
each site i is given by (o,.i'i}, and with use of
X&" =&'F/&(IJ& ' )'. From Fig. 2(b) we note that
the simulation greatly overestimates (' at low T.
Obviously, by far too large correlations (o',. o', )r
at large distances r,. —r, are predicted because
the system stays in an energetically favorable
valley in configuration space [close to the par-
ticular ground state (o,. ' }]for a long time. Hence
Monte Carlo results for both (' and q(t) cannot
be expected to closely approximate the equilibrium
behavior of an infinite system.

In a Mattis spin-glass or equivalent Ising fer-
romagnet, P' as defined in Eq. (2) quickly ap-
proaches the order parameter squared of the in-
finite system as N increases, see Fig. 3. We
note that in the "frustrated" case, g' steadily
decreases as N is increased. The saturation val-
ue g'(T =0) decreases so strongly that we suggest

lim g'(T =0)=0,
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FIQ. 2. Spin-glass order parameters q(t) (left part) and g (right part) plotted vs temperature, as obtained from
Monte Carlo and exact calculation, with use of L =16 and a realization (J;~) which has particularly small g~. Vari-
ous observation times are shown (data for t =2000 are the results for L =80 of Ref. 12; these data and the full cir-
cles have random spin configurations as initial condition, while the others have a ground state as initial condition).

i.e. , no order even in the ground state. On the
other hand, the system differs from an ordinary
paramagnet, for which ('-=I/¹ We have strong

correlations in the ground state, consistent with
other approaches"", the N dependence of g'(T
=0) in Fig. 3 suggests that
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FIQ. 3. Average spin-glass order parameter p' plot-
ted vs temperature for several L. Error bars are cal-
culated from averages over 100 realizations (J,,) for
I =6, 40 realizations for I =l2, and 25 realizations for
I =16. Full curves denote exact results for + J Mattis
spin-glasses of the same size (note ksT~ '"'/J =2.27).

(in the fully frustrated Ising antiferromagnet this
decay also occurs with p = I,"and perhaps p ( ],

in our case as well). This result would be con-
sistent with the fact that concentration expansions
for X& in diluted spin-glasses yield a strong di-
vergence. " If such a power-law decay also oc-
curs for 0( 7.'( T„ it would imply a transition
without order parameter just as in the d =2 XF
model. " The inflection points in the curves of
Fig. 3 would be an estimate of T, . These inflec-
tion points seem to shift towards smaller T as N
increases, and hence there may be T, =O for d=2.
But the similarity of Monte Carlo results for all'

d, 2 (d ( 5, where q(t) slowly decays with time,
and g' quickly decreases with temperature, ' could
indicate that a transition of this type occurs at
higher dimensionalities.

We have obtained similar results for the spin-
glass with Gaussian bond distribution, too: Monte
Carlo results for specific heats are reliable, but
the relaxation time to reach a ground state in-
creases exponentially with system size. There is
one important diff erence: The order parameter
of the Gaussian model approaches unity for T -0
for aD I.'
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In conclusion, by combining our recursive cal-
culation of partition functions of finite disordered
systems with simulations, we have separated
equilibrium from nonequilibrium eff ects. From
the size dependence we conclude that there is no
nonzero order parameter for d = 2 Ising +J spin-
glasses, although there are strong spin correla-
tions over large distances at low temperatures.
Applications of our method to c& and Ising sys-
tems with random fields are in progress. " Clear-
ly, this method should yield useful results for a
large class of models for disordered materials.
In addition, investigating a possible power-law
decay of correlations theoretically from the point
of view of frustration ~d gauge «nvariance"'4
would be very interesting.
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We have calculated the ground-state properties of the & = g XY and Heisenberg models
on finite triangular and square lattices with competing interactions which would lead to
frustrated classical spin models. The evidence favors the hypothesis that quantum spin
models on infinite two-dimensional lattices experience no frustration.

The concept of the frustration effect in spin
systems with competing interactions has been
elaborated especially for the s = —,

' Ising model"
and for the planar model. ' The assignment of the
signs of the interactions to bonds of the lattice
is such that the ground state of these classical
systems is highly degenerate. A motivation for
such studies is the elucidation of the nature of
spin-glasses. ' The first frustrated system stud-
ied was the Ising antiferromagnet on the triangu-
lar lattice. '

Frustrated spin models are usually character-
ized by the Hamiltonian

X= - -,' Q J,„5 S,"S,".
&ij& n=l

The first sum is over nearest-neighbor pairs of
sites on a lattice. @=1, 2, and 3 correspond to
the Ising, XY, and Heisenberg models, respec-
tively. In the classical (S= ~) limit, S;" is a
Cartesian component of a unit vector; in the ex-
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