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by numerically integrating the dynamical equa-
tions. They include the effects of boundaries,
which increases the difficulty and may explain
part of the complicated motion they report. Still,
the mechanism seems clear: The system evolves
toward a local minimum of f at P =0 or n; upon
reaching the local minimum, f changes, with the
local minimum now a, local maximum. The ex-
ternal source of the heat current provides the en-
ergy dissipated by this process.

The preceding analysis, based on helical solu-
tions, cannot be quantitatively correct, for it is
likely that the unstable helices develop into more
complicated time-dependent states. Nevertheless,
we expect the qualitative behavior to confirm our
second basic result that an applied parallel mag-
netic field H &H, should induce a marked time-de-
pendent deformation, whose character depends on
the nature of the experiment: A persistent cur-
rent in a torus should lead to a stable wide-angle
helix with reversed but diminished supercurrent,
whereas heat flow should produce anharmonic but
periodic oscillations of the texture.
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This situation is analogous to the Eckhaus instability
discussed in Ref. 5.

The present dynamical equations are insufficient to
calculate the period of the motion because 9f/8P van-
ishes at P = 0 or z. The uniform state is thus an un-
stable equilibrium and fluctuations must be invoked for
the system to move away.
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Correlation functions and the Cotton-Mouton coefficient are calculated for liquid crys-
tals beyond the mean-field approximation. . My results in the context of a fIrst-order
transition are compared with the recent experiments of Keyes and Shane for N-[p-
methoxybenzylidine]-p-butylaniline (MBBA) connecting with the possible tricritical nature
of the nematic-isotropic transition.

Recently, Keyes and Shane' measured the gap
exponent 6 for the nematic-isotropic (N-l) phase
transition in N-[P -methoxybenzylidine]- p-but-
ylaniline (MBBA) in the isotropic phase. They
found b =1.26+0.10 which is consistent with the
tricritical value 4 =1.25 but differs from the
mean-field prediction b, = 2, giving the impres-
sion that the N-I transition is actually tricritical
in nature. In this Letter, among other things,
we show that by going beyond the mean-field ap-
proximation the so-called gap exponent 4 is not
a constant but in general a function of tempera-
ture T. Depending on the temperature range un-

der consideration, the effective exponent can de-
viate from the mean-field value and may be
equal to 1.59, for example. Therefore, the mea-
surement of 4 alone is insufficient in determin-
ing the critical or tricritical nature of the N-I
transition. In addition, the deviation of the in-
verse of the Cotton-Mouton coefficient from lin-
earity just above T, is explained.

It has been known for some time that the
de Gennes- Landau theory' is inapplicable near
T, in the isotropic phase. More recently, con-
trary to the current belief, ' Lin and Cai4 have
shown that, quantitatively speaking, the same
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de Gennes-Landau theory is also inapplicable in
the nematic phase (although it does predict cor-
rectly~' the asymmetry of the correlation-length
exponents on the two sides of T, as confirmed
experimentally by Dong and Tomchuk'). The in-
adequacy of the mean-field approximation in de-
scribing the N-I transition is thus clear and there
is obviously the need for a better theory.

Let us consider the simple Maier-Saupe Ham-
iltonian with an external magnetic field added,

H = —Q J,,P,(cos8,,) hQ—P,(cos8, ), .

where J„=J;„4,, =0, and k is proportional to
the square of the external field. For our purpose
it is sufficient to work with the modified form:

H = —g J,,P,(cos 8,.)P,(cos8;)

—h+P, (cos8, ). (1)

In fact, within our approximation to be presented
below, the two forms have the same effects. '

In the mean-field approximation, when h = 0
(kB =1) one has T, =0.22019J, and the supercool-
ing temperature T*=0.2 J» where J,=Q, J,,
Also

(7)

where the thermal averages are taken in the
mean-field approximation. Combining (5) and (7)
and noting that E((PE, )) = S, we have

(s, s, &= s'+ p(5s')(p-„J„, (s, s, ) —J,s'),

Equation (8) can be easily solved to give

PJ,(5S') /g(P J,(5S') )
1 —( 5S2) PJq

where g(y) =N'p--„(1/y —J-„/J,) '. G-„ in (9)
goes beyond the mean-field approximation and
obviously satisfies the sum rule (4). For k=0,

x 1
Go=i g )

(5S),

(9)

(10)

where E„=—5~,. J,, S,, and

( )
jd8, S, exp[P(E, +h)s, ]sin8,

jd8, exp[ P(E, +h)S, ]sin8,

To obtain a closed equation for (S;S,), expand
F(PE, ) in a Taylor series and keep the fluctuation
to linear terms so that

8S j3Jo/5
su „=, ~=, 1 —PJ/5

S -=, = '0 (1+e) e ' - e ~ ~' )
Q2$

2 g 2
n=o, S=o

(2) with ~ =—PJ0(5S').
In the high-temperature phase in the presence

of external field B, the Cotton-Mouton coeffi-
cient C = Gn/H' (where Sz is the anisotropy of the
refractive index) is proportional to S/h or S/u.
Hence,

where the order parameter is S=—(P,(cos8;)), h
=—Joo., e =(T —T*)/T*, and p—= 1/T. With use of
Eqs. (2) and (3), one obtains immediately the
mean-field value 6= 2, in agreement with that
from the de Gennes-Landau theory.

We now define the correlation function G;,
—= (S,S, ) —S' and its Fourier transform

G-„=N '5, , G;, exp[zk ~ (R,. —H,. )],

C -S/n = S, + 'S o. +.. . . —

Note that the results for S, and $, given by Eqs.
(2) and (3) involve the mean-field approximation,
while rigorously we have

and

where S,. =-P,(cos8, ), N is the total number of
molecules, and R, is the position of the ith
molecule. By definition, G& satisfies the rigor-
ous sum rule

Consequently,

C -C, +C,a, (12)

N-'P-„G-„= & 5S') -=(S '& —S'. (4)

Parallel to the procedure used in Ref. 5, the
exact formula of Suzuki" for classical systems
is used. When i&j, we have the following rigor-
ous result:

&s, s, &= &S,.E(pE„)&,

where C, = G,(J,/T) and C, = ,'G, (J,'/T) . —

When h=0 and S=O, (5S')=-,' so that@ =T*/T
and

c,=x'/[(1 -x)g(x)].
For simplicity, we assume that the molecules are
to be positioned in a simple-cubic lattice. In this
case, g(y) is a monotonic increasing function
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such that g(y) )y with g(0) = 0 and g(1) = 1.516.
For T» T* (x «1), g(x) =x so that C = x/(1 — )

/'& —T ~ and we recover the mean-field re-
sult. However, for T-T* (x -1) g~qx)x - j, @ax~ deviates
very much from linearity and has most impact

lat
on the shape of C . In Fig 1 th de ots are calcu-
ated values of C, ' from (13). The straight line

th dt
is there to guide the eye. The b d

e ots near T c
e en ing down of

orresponds exactly to what is
observed" as
Fi. 2o

presented in the inset (tak f
'g. of Ref. 1). The unit of B'/6n in the inset

is arbitrary.
In Fig. 2, our calculated C, as function of T

p e . In the inset, the experim t l llotte1
ion o Tis

C isd
en a value of

, is deduced from Fig. 1 of Ref. 1. The unit is
arbitrar . Thery. e shape of the two curves definitel
agree with each other (although a quantitative

e ini e y

comparison is unjustified at this point; see dis-
cussion below).

Combining (10) and (13), we have

~C 5 1 e g'(1/(1+ e) )
C 7 e 1+ 6 g(l/(1+ 6))

where g'(x) -=dg(x)/dx. Note that when g(x) is ap-
proximated by x, Eq. (14) reduces to C /C2

10

= ~7(1+ e)/e' which
'ich is nothing but the mean-field

result —,'S,/S, with use of Eqs. (2) and (3). How-
ever, a.s shown in (9) the exa.ct form of th fo e unc-

~&x' is what guaranteed the fulfillm tu i ment of the
ru e (,. Furthermore, as is evident in (13)

gives rise to the bending down of theo ecurvec, '

We may write (14) as

C,/C, -~ '(') (15)

functio
emphasizing that the expone t 6 '

nen is, in fact, a
unction of e, or equivalentl T. I
n 2/, ) is plotted against —inc. The dots are

calculated from 14 The slope of the linear fit
gives the effective 6 for the te emperature range
under consideration. We find 6=1.59.

+ 0.10
Compared with experimental value' of 6= 1.2

, our calculated value of 1.59 do
o =. 6

seem to be cl
oes not

surprisin at all
is is note close enough. However th

'
g . The simple Maier-Saupe Hamil-

tonian used here is known to bn o e an oversimplifica-
tion as far as numerical r ltresu s are concerned.
For example, it gives (T, —T*)/T', - 10 ' com-
pare with the experimental value of 10 '.
im ortantp point we want to bring out is that as b,

ue o '. The

is concerned the mean-field approximatio
not reliable. Ane. An" when one goes beyond this a-
proximation as w e demonstrated above with the

on is ap-

CtQ

r 5—

4
45

CV
I

3
CJ

52

0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32

0.20
TG

0.24

T (Jo)

0.28 0.32

FIG. 1. Inverse of the calculated Cotton-M
ficient C vs

o on-Mouton coef-
1 vs temperature. The strai ht l''g ine is the e to

e eye. The inset is the experimental result
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critical point is not precluded. But this needs
other evidence. In this regard, theoretical in-
vestigations along the line presented here with
use of a more realistic Hamiltonian is most de-
sired. In fact, preliminary results are rather
encouraging and will be reported elsewhere.
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FIG. B. Calulated ln(C2/C&) vs inc. The straight line
is a linear fit.

simple Hamiltonian, 6 can indeed deviate greatly
from the mean-field value. Therefore, a meas-
ured 6 (even if it is close to tricritical exponent)
that disagrees with the mean-field value does not
constitute a conclusive verification that the nem-
atic-isotropic transition is not an ordinary criti-
cal point. It only says that the mean-field ap-
proximation is not good enough in describing this
transition. Of course, the possibility of a tri-
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Neutron scattering measurements on sirgle crystals of hexagonal tungsten bronzes
~p pg WO3 reveal low-frequency, relatively dispersionless phonon branches which can
be associated with the vibrations of the meta1 atoms M in the large open chan~els they
occupy in the crystal structure. An analysis based on Eliashberg theory shows that
the strong dependence of the superconducting transition temperature on the species M
arises from these special phonons.

The possibility that the superconducting transi-
tion temperature within a group of materials
could be raised substantially by varying lattice-
dynamical properties has been explored in many
studies. However, the direct relation between

changing phonon properties and higher T, 's, al-
though in principle understood within strong-coup-
ling theory, is difficult to verify experimentally.
In this article, experimental results and a suit-
able analysis are presented showing that, for the
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