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A Landau expansion of the normal-mode amplitude shows that the instability of helical
textures in a magnetic field parallel to the superflow always occurs as an inverted bi-
furcation that does not represent a transition to a nearby steady configuration. Above a
critical magnetic field, for example, physical arguments show that a persistent cur-
rent in a torus will be partially quenched, leading to a stable wide-angle helix, but that
the corresponding texture in an applied heat flow wi11 oscillate anharmonically.

In the presence of relative superflow with v,„
=v, -v„, the hydrodynamic theory of 3He-A pre-
dicts a spontaneous distortion' of a uniform con-
figuration into a helical texture. " This second-
order Landau transition is very similar to the on-
set of Bernard convection rolls4'; it occurs at a
critical value of an external stress such a paral-
lel magnetic field or a decreased temperature.
The apex angle of the helix grows with increasing
stress until the helix itself becomes dynamically
unstable. The present work examines this new
transition in the dipole-locked regime with a
Landau expansion for the time derivative of the
unstable mode. The transition always occurs as
an inverted bifurcation that produces a catastroph-
ic deformation, rather than another second-order
transition to a new distorted state. We study two
specific models for the relative v,„: external
heat and superQow in a torus. Both systems sup-
port stable helices but behave quite differently
beyond the threshold of instability.

In the dipole-locked hydrodynamic approxima-
tion, the order parameter of 'He-A is a complex
orbital vector I+ in. Equivalently, it may be
characterized by the unit vector E =m &&n and the
phase 4 associated with rotations about l. The
basic hydrodynamic equations' are the conserva-
tion of mass and momentum, and the dynamics
of l and 4, which just suffice to determine the
seven hydrodynamic variables 0„, p, I, and C .
For simplicity, we here fix v„exI;ernally and
treat the Quid as incompressible. The pressure
p will then be determined by the phase equation.

For helical textures, it is natural to use the
Euler angles"' (n, P,y) of the triad l, m, n rela-
tive to some standard configuration with z along
v„. The superfluid velocity is given by v,
= —cosP&n —Vy, where a factor of h/2m, has
been absorbed to give v, the dimensions of a
wave number. To simplify the problem, consid-
er one-dimensional textures depending only on
z and t. A direct evaluation of the hydrodynamic

ttsin'p(Bn/Bt+ v n') =(Bf/Bn')' —Bf/Bn

p(B p/Bt+ v.,p') =(Bf/B p')' Bf/Bp, -
(2a)

(2b)

where derivatives of f are taken, with its re-
maining natural variables (n, P, j~) kept fixed.

A steady helix has a constant polar angle P,
and a linearly increasing azimuthal angle eo
= -u(z -v„t). It is static in the frame with v„=0
and otherwise precesses uniformly. Consider
two ways to fix 0„:

(1) Superflotc in a torus. —The rotating walls
lock the normal Quid, and we simulate the mul-
tiply connected geometry by applying periodic
boundary conditions over a length L. Single-val-
uedness of the order parameter quantizes the
"winding numbers" n„and n

&
of the angles n and

y. When cosp, =+ 1, onlyn„+nz is quantized,
with n' +y' an integral multiple of 2'/I; thus the
original uniform texture has quantized relative
superflow to= —(y'+ n'+ v„)~ When the helix first
appears, n and n

&
become separately quantized,

fixing no' = —u and yo' =s—= —(to+ u+v„). The cor-
responding relative velocity v,„,=to +u(cosp, + 1)

free-energy density' then gives

f=s(p, + p, sin'P)(n' cosP+y'+ v„,)'
—C,n' sin'p cosp(n' cosp+ y' + v„,)
+ —,

' sin'p(K'„cos'p + K, sin'p} n"
+ —,(K, cosap+K, sin'p)p" +2K H cos'p,

where a prime denotes a derivative with respect
to z and the coefficients are known from model
calculations. ' Equation (1) expresses f in terms
of the Euler angles but, as a result of our as-
sumptions, it contains neither n nor y. In addi-
tion, current conservation implies that j~ =Bf/
Bv„=-Bf/By' is now a conserved quantity, which
can be made explicit with a Legendre transforma-
tion f=f y'Bf/By', —analogous to the Bouthian of
classical mechanics. " In terms of this new
function, the dynamical equation for E becomes
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For small-angle helices in the presence of heat
Qow, this condition is more restrictive" than
Eq. (3) by a factor of 3 on the right-hand side,
so that changing the heat flow (and thus u„) can
induce an instability. A similar condition holds
for a torus. Larger-angle helices require numer-
ical work. If the helix is formed with u =u„by in-
creasing the magnetic field near T, in the pres-
ence of a fixed m (in a torus) or fixed j» (for heat
flow), the helix becomes unstable when

po = 0.599,

H, '= 0.277 j»'/p, ' (heat flow); (5a)

Po= 0.622, X H, = 0.289p, "m2 (torus). (5b)

For the typical value v,„=0.01 cm/sec in the uni-
form state, the instability occurs at H, = 1.5 Oe.

A quantitative analysis of the behavior beyond

is no longer quantized; it depends on Po, which
is determined as a function of u and s through the
equation (&f/&P), =0. With increasing external
stress, a small-angle solution first occurs
whens'0

Ha ~u2[(C0~2p ii)2/Z, -p, ])K,(u-u„)', (3)

with u„=(C,+2p, )ui/K, . Equation (3) is first sat-
isfied when u =u» giving a characteristic pitch
proportional to the original relative superflow w.

(2) Heat flo~.—The condition of zero mass flow
in the laboratory frame requires j~ =-pv„, where
p is the total density. Since the current is fixed,
it is natural to use the transformed free energy
f, and P, is determined by the equation (&f/& P),
=0. Small-angle solutions to this equation exist
whenever (3) is satisfied with ~ replaced by jo, /
p, . The onset of helical textures is the same in
heat Qow and the torus, but the evolution of the
textures under increasing stress differs marked-
ly because of the difference between the fixed
quantities (j» in heat flow, n„and n z in a torus).

To study the stability of the helices, we use
Eq. (2) for both heat flow and flow in a torus,
noting that the current j„in a torus depends on
the equilibrium value of P» with the correspond-
ing f a function not only of P, but also of Po and

u. If n = no+5 o. and P =P 0+ 5P, small deforma-
tions cc e'" about the equilibrium helix are stable
for all k if' ac b'& 0, w-here

the instability threshold starts from Eqs. (2). We
first study the linearized equa. tions of motion
writing, for example, 5o.(z, t) =P 5n (t) e™0'i
where k, =2m/L and bn „*=6oi to ensure reality.
The associated normal modes $„and g are lin-
ear combinations that satisfy the equations of mo-
tion

~ m+ikomv ne ~ m=om ~ my
(+)

(-)1m+»0~&ngnm =0m nmg

po ' =-—[c+m k (d+ a)]

~ f-', [c+m'k, '(d + a)l'

(6)

where e, f, and g are various third derivatives
off. This equation is our first basic result, for
the coefficient of A is positive definite independ-
ent of the details of Eq. (1). Thus the instability of
the helical texture always appears as an inde~ted
bifurcation, ' with A(t) increasing catastrophically
for 0' ' & 0. If the collapse of the helical texture
occurs with increasing magnetic field at fixed u
=u„, we find Se —Sfa/b + ga /b = —1.07Vp, for
heat flow and —0.8039p, for a torus; helices in
heat Qow experience more rapid growth beyond
threshold.

Can these phenomena be observed'P For k0-0,
the growth rate 0, ' first becomes positive when
b'= ac, at the critical field given by Eqs. (5).
Since the condition 0, ' =0 defines H„ the growth
rate 0, ' increases linearly from zero for small
positive H -H, . When b —ac reaches 4ko'da, the
mode $, also becomes critical, and pv, ' has the

+m'k '[b'-ac -m'k 'ad]j"'. (7)

[see Eq. (4)] and d =(&~f/BP'2)o. Evidently, o

is always negative, and the g modes are never
critical. On the other hand, if k,'ad & 5'-ac
(4k02ad, the mode $, exhibits exponential growth,
but those with rn) 2 remain stable. Note the im-
portance of the finite length L, for otherwise
many $ modes would become unstable together.

To analyze the ensuing nonlinear behavior, we
expand Eqs. (2) through tl'ird order in ba and 5P,
assuming that $,(t) =A exp(-ik, v „t), where A is
a real time-dependent amplitude. A detailed ex-
amination shows that the modes m=0 and m=2
are of order A', and that the originally orthogon-
al mode q, (t) is of order A'. To leading order in
the small parameter koa/b =O(%0/2m, v,„), only
the modes $, and $2 contribute through order A',
and we find the approximate Landau equation

pA = po'+ A'+ (k 02/6d)(3e —3fa/b +ga2/b ) A, (8)
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approximate value 3ko~da/c. Using the known
value' of p, near T„we estimate the correspond-
ing growth rate 0', ~ 'i = 3.8 && 10 ' 0,T, /& sec ' for
u,„=0.01 cm/sec and L = 1 cm. The associated
increase in H should be II -II,= 0.2 oe. Within
this limited range, it may be feasible to verify
experimentally that the linearized growth rate
&,

' is indeed proportional to H-II, .
What happens once the system leaves the re-

gime of the above nonlinear analysis? We sug-
gest that the inverted bifurcation signals the on-
set of intrinsically time-dependent dissipative
behavior. The free energy of the helical states
as a function of the opening angle Po provides
qualitative insight into the possible character of
the textures.

In a torus, the pitch of the helix u„= —e,' and
the quantity s =w -I„+v„are fixed; the appropri-
ate free energy is given by f in Eg (1)., which
has o., P, andy as its natural variables. In heat
flow the helices have N„and j« fixed, and the ap-
propriate free energy is f, with n, P, and j~ as
its natural variables. In either case, the helical
solutions represent a local minimum of the ap-

77 /2
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FIG. 1.. Free-energy density for helical texture, as
a function of opening angle. Curve a shows the free en-
ergy at the critical magnetic field where the helical tex-
tures become dynamically unstable. Curves b and c
show, respectively, the appropriate free energies in a
toroidal persistent current and heat flow after the open-
ing angle P reaches m.

propriate free energy. Curve a of Fig. 1 shows
schematically the structure of f (P,) near H~H,
(the depth of the local minimum has been exagger-
ated), and f(P,) is practically identical. The addi-
tional degrees of freedom associated with e and

y allow the system to escape from the local mini-
mum at Po at H, . The form of the free energy in
curve a suggests that the texture will become
time dependent, with the dynamical equations
tending to move the system inexorably' toward
P =m. At P =w, however, the two systems are
likely to behave very differently.

When P reaches m in the torus, the relative
velocity is v,„,=u —2uj, =w. Since u„=0.6u in the
dipole-locked limit near 7'„we have ~ =- 0.&v,
and the direction of the relative velocity has ac-
tually reversed f The system is now in a uniform
state with the relative velocity so parallel to E and

magnetic field II= II,. Furthermore, the degener-
ate angles e and y are free to change, as long as
the winding number of the difference n —y re-
mains quantized. To test for the stability of this
uniform state with P =m, imagine it to fluctuate
in a superposition of component helical states
with all possible values of the pitch u. In the
dipole-locked regime, the dynamical equations
predict a maximum growth rate for a helix with

pitch u„= —(Co+ 2 p, ')to/K, . Replacing m by w and

u„by u„ in Eg. (1) with H )H, changes f (p), as
shown with curve b. It has a local maximum at p
=w and a new local minimum near P =m/2 that
turns out to be dynamically stabl'e. Presumably
the system will relax to this minimum leaving a
steady helix with pitch u&. Thus the quenching
of the persistent supercurrent is incomplete, be-
cause the factor 1 —2u„/av in the relative velocity
I allows the magnetic field to dominate the tex-
ture, preventing the process from repeating.

When P reaches m in heat flow, the pitch of the
helix is again free to change, but now the total
current must remain fixed, in contrast to the
Qow reversal in a torus. The uniform texture

P = m is also unstable in the presence of heat flow,
and the maximum growth rate occurs for a heli-
cal fluctuation with u =-u„. The free energy f(P)
with I = —u„(curve c) is just a reflection about

P =w/2 off (P) with u =u„(curve a). The system
evolves by decreasing P, escaping from the local
minimum because II)II, and continuing toward

P =0. At P =0 the value of u changes from -u„ to
u„and the process repeats. Thus P oscillates be-
tween 0 and m, producing a time-dependent state
whose motion is anharmonic, but periodic. "
Hook and Hall" have obtained similar phenomena
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by numerically integrating the dynamical equa-
tions. They include the effects of boundaries,
which increases the difficulty and may explain
part of the complicated motion they report. Still,
the mechanism seems clear: The system evolves
toward a local minimum of f at P =0 or n; upon
reaching the local minimum, f changes, with the
local minimum now a, local maximum. The ex-
ternal source of the heat current provides the en-
ergy dissipated by this process.

The preceding analysis, based on helical solu-
tions, cannot be quantitatively correct, for it is
likely that the unstable helices develop into more
complicated time-dependent states. Nevertheless,
we expect the qualitative behavior to confirm our
second basic result that an applied parallel mag-
netic field H &H, should induce a marked time-de-
pendent deformation, whose character depends on
the nature of the experiment: A persistent cur-
rent in a torus should lead to a stable wide-angle
helix with reversed but diminished supercurrent,
whereas heat flow should produce anharmonic but
periodic oscillations of the texture.
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Correlation functions and the Cotton-Mouton coefficient are calculated for liquid crys-
tals beyond the mean-field approximation. . My results in the context of a fIrst-order
transition are compared with the recent experiments of Keyes and Shane for N-[p-
methoxybenzylidine]-p-butylaniline (MBBA) connecting with the possible tricritical nature
of the nematic-isotropic transition.

Recently, Keyes and Shane' measured the gap
exponent 6 for the nematic-isotropic (N-l) phase
transition in N-[P -methoxybenzylidine]- p-but-
ylaniline (MBBA) in the isotropic phase. They
found b =1.26+0.10 which is consistent with the
tricritical value 4 =1.25 but differs from the
mean-field prediction b, = 2, giving the impres-
sion that the N-I transition is actually tricritical
in nature. In this Letter, among other things,
we show that by going beyond the mean-field ap-
proximation the so-called gap exponent 4 is not
a constant but in general a function of tempera-
ture T. Depending on the temperature range un-

der consideration, the effective exponent can de-
viate from the mean-field value and may be
equal to 1.59, for example. Therefore, the mea-
surement of 4 alone is insufficient in determin-
ing the critical or tricritical nature of the N-I
transition. In addition, the deviation of the in-
verse of the Cotton-Mouton coefficient from lin-
earity just above T, is explained.

It has been known for some time that the
de Gennes- Landau theory' is inapplicable near
T, in the isotropic phase. More recently, con-
trary to the current belief, ' Lin and Cai4 have
shown that, quantitatively speaking, the same
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