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Molecular-dynamics calculations of shock waves in perfect three-dimensional solids
at nonzero initial temperatures reveal a transition in the nature of the asymptotic shock-
wave structure as a function of shock strength. The key to this transition from non-
steady to steady waves where the Rankine-Hugoniot relations are obeyed is the partial
relaxation of compressive shear stress behind the shock front which accompanies small,
but permanent, transverse strains in atomic positions.

Molecular dynamics (MD) has been used as a
tool to study the nature of shock waves for many
years. An early three-dimensional (3D) MD cal-
culation of a shock wave in a perfect crystal car-
ried out by Tsai and Beckett' showed nonsteady-
wave behavior. They concluded that the Rankine-
Hugoniot (RH) jump conditions could not be used
to analyze data from planar impact experiments.
The RH relations between initial and final states
in a shock wave depend on the existence of a
steady wave in addition to the conservation of
mass, momentum, and energy. ' The equations
of motion solved in MD explicitly obey the con-
servation laws, so that the test of the validity of
the RH relations in MD shock calculations cen-
ters only on the question: Is the wave steady? In
contrast to Tsai and Beckett's discovery of non-
steady waves, Paskin and Dienes' reported a ser-
ies of MD calculations of shock waves in perfect
Lennard-Jones 6-12 potential (LJ 6-12) crystals
at nonzero initial temperature, where only steady
waves were observed (and therefore, no signifi-
cant deviations from the RH relations). A satis-
factory resolution of these disparate findings has
not yet been published.

In this paper we report the results of MD calcu-
lations of shock waves in perfect 3D LJ 6-12
crystals. As shock strength is increased, we ob-

serve a transition from linear growth of the
shock-wave thickness (self-similar wave) to a
finite shock width (steady wave) when the initial
temperature T, is nonzero. A convenient meas-
ure of shock strength is the product a v, where o
is the cubic anharmonicity coefficient for the pair
potential (10.5 for LJ 6-12) and v is the piston
velocity normalized by the long-wavelength sound
speed. If T, = 0, we a,lways observe self-similar
waves, just as in the (1D) nonlinear chains. ' We
conclude that the transition from nonsteady to
steady waves in perfect 3D T, & 0 crystals, as
shock strength passes a critical value, is due
principally to the increase in coupling between
vibrational excitations normal and transverse to
the direction of shock-wave propagation. ' For
strong shocks, the coupling between vibrational
modes is strong and, along with the observation
of steady shock waves, we see nearly complete
compressive shear- str ess relaxation behind the
shock front accompanying small, but perma, nent,
transverse strains in the atomic positions. The
time and distance scales that are feasible for
MD calculations may be far too restrictive to
trace all the details of plastic flow behind a
shock wave, especially where processes that de-
pend upon the presence of defects may dominate.
Thus, the observation of nonsteady waves for
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weak shocks in MD experiments should not be
used as a basis for attacking the RH relations.
We find then that previous calculations reporting
linear growth of the shock thickness' are in the
1D regime (weak shock strengths and low initial
temperatures) and, therefore, not characteristic
of a SD solid, while others who have investigated
LJ 6-12 solids' studied only the strong-shock or
steady-wave regime.

We have performed MD caluclations of a 3D
face-centered-cubic crystal of particles interact-

ing with a pairwise LJ 6-12 central potential.
Periodic boundary conditions were used in the x
and y directions and the shock waves were gener-
ated by shrinking periodic boundary conditions in
the z direction. The initial and final thermody-
namic states were both in the solid crystalline
phase. Figures 1 and 2 give the results for two
particular calculations: The first is for an ini-
tial temperature T, =0 and is characteristic of
the systems that exhibit one-dimensional behav-
ior; the second is for T, & 0, corresponding to
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FIG. l. Strong-shock wave in a To ——0 Lennard-Jones
system interacting with nearest neighbors. Distance-
time contours plots of (a) the compression q, and
(b) the z component of the particle velocity, v, . The
highest plotted contour is at the peak value while the
lowest contour is at one e-fold decay down from the
peak to the final value. The dashed lines are drawn
to indicate the position of the lowest contour behind
the shock front. Since the dashed lines are straight,
but at an angle to the shock front, the wave is nonsteady
and its thickness grows linearly with time.
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FIG. 2. Strong-shock wave in a To& 0 Lennard-Jones
system interacting with three shells of nearest neigh-
bors. Distance-time contour plots of (a) the compres-
sion &I, and (b) the z component of the particle velocity,
v, . Contours are determined in the same manner as
in Fig. 1. The dashed lines are drawn at the rear of
the shock where the final equilibrium thermodynamic
state is achieved.
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about one-tenth of the LJ 6-12 well depth, and
shows steady-wave behavior. For both calcula-
tions the shock-strength parameter is given by
vv=10. 5 and is, therefore, considered to be a
strong shock. ~ The T, =0 system contained 1600
particles arranged in 200 planes with eight atoms
per plane (2x 2 unit-cell cross section). The T,
&0 system contained 1800 particles arranged in
100 planes with 18 atoms per plane (3x 3 unit-
cell cross section). In all ca.ses, the initial den-
sity is such that nearest neighbors sit at the min-
imum of the potential well.

The T, = 0 calculation was purposefully chosen
to be one dimensional in nature. The range of
the potential was limited to first-nearest neigh-
bors. Without any initial random motion of the
particles, the shock generated in the z direction
has no chance to transfer energy to vibrational
modes in the x and y directions. The same qual-
itative behavior (self-similar wave) shown in the
T0 0 calculation was also ob served in a T, & 0,
cv v=0. 525, weak-shock calculation. In Fig. 1 we
show distance-time contour plots of the z com-
ponent of the particle velocity, v„and the com-
pression g. The highest contour plotted corre-
sponds to peak values and the lowest contours
are at one e-fold decay down from the peak to
the final value. The To:0 calculation shows no
stress relaxation and the approach of the temper-
ature to its final value is significantly slower
than in calculations showing some stress relaxa-
tion. The kurtosis, or fourth-order cumulant,
of the velocity distribution far behind the shock
front is nonzero, implying a non-Maxwellian dis-
tribution. ' The width of the shock wave grows
linearly as indicated in the distance-time plots.
For the weak shock T, &0 calculation the width
also grows linearly, so that the behavior is es-
sentially one dimensional.

In Fig. 2 we show the v, and q contour plots for
a strong shock with To&0. The range of the po-
tential is limited to a sphere containing third-
nearest neighbors at the initial density. Stress
relaxation of components normal and transverse
to the direction of the shock propagation is ob-
served along with small, but permanent, trans-
verse strains in atomic positions. The tempera-
tures calculated from velocity components in the
normal and transverse directions quickly equil-
ibrate and the kurtosis of the velocity distribution
goes to zero far behind the shock front, indicat-
ing a Maxwellian distribution. As indicated in

Fig. 2, the shock-wave structure becomes steady
with a finite width; consequently, the RH condi-
tions are appropriate for describing the MD re-
sults. We have observed similar qualitative be-
havior for strong shocks in solid systems using
other pair potentials. In MD calculations start-
ing with a fluid as an initial state, we also see
steady-wave behavior with finite shock thickness.

Steady-wave behavior is obtained by an appro-
priate combination of initial temperature and
shock strength. For T, =O the shock is nonsteady
and one dimensional for all values of Q. v. For To
&0, we have found that the wave is nonsteady
(self-similar) for small o v, but steady for large
ev. As a. v increases for a finite T, &0 the an-
harmonic coupling increases until the vibration-
al modes are strongly coupled. It is possible
that, by increasing T„steady-wave behavior will
begin at a smaller e v, although we have not yet
quantitatively determined the values for T, and
a v where the transition from nonsteady to steady-
wave behavior occurs. It is likely that this tran-
sition is an artifact of the perfect crystal, and
that nonsteady-shock-wave behavior is unobserv-
able in real crystals because of additional plastic
flow mechanisms.
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